Wednesday, May 27, 2015

BSE Case Associated with Prion Protein Gene Mutation

Saturday, August 14, 2010

 

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

 

 BSE Case Associated with Prion Protein Gene Mutation

 

Ju¨ rgen A. Richt1¤*, S. Mark Hall2 1 National Animal Disease Center, United States Department of Agriculture, Agriculture Research Service, Ames, Iowa, United States of America, 2 National Veterinary Services Laboratories, Pathobiology Laboratory, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, United States of America

 

Abstract

 

Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) of cattle and was first detected in 1986 in the United Kingdom. It is the most likely cause of variant Creutzfeldt-Jakob disease (CJD) in humans. The origin of BSE remains an enigma. Here we report an H-type BSE case associated with the novel mutation E211K within the prion protein gene (Prnp). Sequence analysis revealed that the animal with H-type BSE was heterozygous at Prnp nucleotides 631 through 633. An identical pathogenic mutation at the homologous codon position (E200K) in the human Prnp has been described as the most common cause of genetic CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. A recent epidemiological study revealed that the K211 allele was not detected in 6062 cattle from commercial beef processing plants and 42 cattle breeds, indicating an extremely low prevalence of the E211K variant (less than 1 in 2000) in cattle.

 

Citation: Richt JA, Hall SM (2008) BSE Case Associated with Prion Protein Gene Mutation. PLoS Pathog 4(9): e1000156. doi:10.1371/journal.ppat.1000156 Editor: David Westaway, University of Alberta, Canada

 

Received June 5, 2008; Accepted August 15, 2008; Published September 12, 2008

 

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Funding: This work was supported by the USDA-ARS-National Animal Disease Center (NADC) and USDA-APHIS-National Veterinary Services Laboratories (NVSL) and by the NIAID-NIH PO1 AI 77774-01 ‘‘Pathogenesis, Transmission and Detection of Zoonotic Prion Diseases’’.

 

Competing Interests: Patent pending: Dr. Ju¨ rgen A. Richt submitted a patent application entitled ‘‘Novel Polymorphism in Bovine Prion Protein Gene Sequence’’ (Docket Number 0078.06; Serial No. 11/787,784) on April 18, 2006.

 

* E-mail: jricht@vet.k-state.edu

 

¤ Current address: Kansas State University, College of Veterinary Medicine, DM/P, Manhattan, Kansas, United States of America

 

Author Summary

 

Bovine spongiform encephalopathy (BSE or Mad Cow Disease), a transmissible spongiform encephalopathy (TSE) or prion disease of cattle, was first discovered in the United Kingdom in 1986. BSE is most likely the cause of a human prion disease known as variant Creutzfeldt Jakob Disease (vCJD). In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in ‘‘the approximately 10-year-old cow’’ carrying the E221K mutation.

 

Introduction

 

Transmissible spongiform encephalopathy (TSE) agents induce fatal neurodegenerative diseases in humans and in some mammalian species [1]. According to the prion-only hypothesis, infectious prions are composed of an abnormal isoform of a hostencoded glycoprotein, called prion protein (PrPc). The diseaseassociated form, PrPd, is derived from PrPc by a post-translational mechanism that involves conformational change [1]. Human TSEs include Creutzfeldt–Jakob disease (CJD), Gerstmann– Stra¨ussler–Scheinker syndrome, Kuru and Fatal Familial Insomnia [1]. In animals, several distinct TSE diseases are recognized: Scrapie in sheep and goats, transmissible mink encephalopathy in mink, chronic wasting disease in cervids, and bovine spongiform encephalopathy (BSE) in cattle [2]. BSE was first detected in 1986 in the United Kingdom and is the most likely cause of variant CJD (vCJD) in humans. The origin of the original case(s) of BSE still remains an enigma. Hypotheses include (i) sheep- or goat-derived scrapie-infected tissues included in meat and bone meal fed to cattle, (ii) a previously undetected sporadic or genetic bovine TSE contaminating cattle feed or (iii) origination from a human TSE through animal feed contaminated with human remains [3]. This study will provide support to the hypothesis that BSE originated from a previously undetected genetic bovine TSE contaminating cattle feed in the U.K.

 

Results

 

Here we report a case of bovine BSE associated with a mutation within the prion protein gene (Prnp) sequence, not previously described for the bovine Prnp. The animal (called ‘‘U.S. BSE Alabama’’) was an approximately 10 year-old red crossbred (Bos indicus6Bos taurus) hybrid beef cow from Alabama (see Materials and Methods). The ELISA-based BSE test (see Materials and Methods) on brainstem from this animal was repeated five times and revealed a strongly positive reaction with mean optical density (OD) value of 2.4060.57, whereas the OD value of bovine control obex was ,0.04.

 

Confirmatory BSE tests employing Western Blot (WB) and immunohistochemical (IHC) analyses for presence of PrPd were subsequently performed (see Materials and Methods). Immunoblots (Figure 1A) revealed (i) presence of PrPd and (ii) intensity of reaction with antibody P4 similar as with antibody 6H4 at identical milligram equivalent amounts. This reaction pattern was described as being unusual or atypical for BSE [4]. Molecular weight analysis revealed unglycosylated and monoglycosylated isoforms of PrPd migrated with an apparent molecular weight higher than respective isoforms of classical or C-type BSE isolates (Figure 1A). A similar migration pattern was observed for the U.S. BSE 2004 isolate, an H-type BSE isolate [4]. Obvious lesions of spongiform encephalopathy diagnostic for BSE were not present in the brainstem, however it was positive for the presence of PrPd by IHC (Figure 1B). Distribution of PrPd in the brainstem of this animal was not as uniform or as intense as seen with the C-type U.S. BSE case from 2003 (Figure 1C) [4]. We concluded from these studies, that this animal contracted an H-type BSE phenotype. Recent work on the molecular characterization of cattle PrPd has allowed to define criteria for the identification of atypical BSE cases in cattle, which showed molecular features of the PrPd distinct from the majority of cattle with C-type BSE [4– 6]. There have been two molecular types of unusual BSE isolates described in the literature [5,6]: (i) a type with a lower molecular mass of the unglycosylated isoform (L-type) and (ii) a type with higher molecular mass of the unglycosylated isoform (H-type) when compared to C-type of BSE.

 

In order to confirm the specimen from this case was of cattle origin and to determine whether the case was associated with a Prnp mutation, the full coding sequence from exon 3 of the Prnp was amplified from DNA isolated from fresh brainstem material (see Materials and Methods) and aligned with known Prnp sequences from cattle, sheep and cervids (Figure 2A,B). The Prnp DNA sequence of this animal is of bovine origin, different from sheep and cervid Prnp sequences (Figure 2A). The sequence was heterozygous on two positions: a synonymous polymorphism on codon 78 (CAA/CAG; Q78Q) and a non-synonymous polymorphism on codon 211 (GAA/AAA; E211K; Figure 2A,B; Table 1). The animal had six copies of the octapeptide repeat region on both of its Prnp alleles (Figure 2A,B). The finding of the E211K mutation is of significant interest because an identical mutation, E200K, at the homologous codon 200 position in human Prnp (Figure 1D) has been described as the most common mutation in humans with genetic CJD [7].

 

Discussion

 

Our results demonstrate for the first time a potential pathogenic mutation (E211K) within the Prnp gene of a bovine with an H-type BSE phenotype at a position representing the most common mutation in humans (E200K) associated with genetic TSEs [7]. This mutation was not found in the Prnp gene of other North American (1 H-type U.S.; 1 H-type and 1 L-type Canadian) and European (7 H-type and 3 L-type cases) cattle [8] and a miniature zebu (H-type) [9] with atypical BSE phenotypes. The functional significance of this finding, however, remains unknown. Importantly, the penetrance of the E200K mutation in humans is very high [7,10]. The origin of atypical BSE cases still remains unexplained. Several hypotheses have been considered including the existence of a previously unrecognized ‘‘sporadic’’ form of a TSE in this species. The detection of the E211K Prnp mutation, known to be pathogenic in humans, in a 10 year old hybrid cow (Bos indicus6Bos taurus) with H-type BSE could provide additional support to the following hypotheses: (i) that U.K. BSE has been acquired from a genetic case or cases of cattle BSE, (ii) that all three etiological forms of human TSEs (sporadic, genetic and infectious) are also present in cattle, and (iii) that BSE started on the Indian subcontinent. However, more data are required to support these hypotheses. It is well known, that large amounts of mammalian protein material were imported from India to the U.K. during the relevant time period (late 1970s and early 1980s) [3]. Therefore it could be speculated that one possible route of contamination of U.K. cattle with BSE was through animal feed containing imported meat and bone meal material contaminated with a case or cases of genetic BSE.

 

Epidemiological investigations conducted by USDA personnel failed to reveal any evidence of a feed source contaminated with TSE material fed to this animal (http://www.aphis.usda.gov/newsroom/ hot_issues/bse/downloads/EPI_Final5-2-06.pdf). There are several possibilities for the origin of the Prnp K211 allele in animal B14842: (i) it arose de novo in a germ line cell from the U.S. BSE Alabama animal or one of its parents; (ii) it arose as a somatic mutation in the U.S. BSE Alabama animal (rather unlikely), and (iii) it is present in a cattle population or breed yet to be found. Recently, it was determined that the 2-year-old heifer offspring of the U.S. BSE Alabama cow also carries the E211K polymorphism, indicating that the allele is heritable and may persist within the cattle population (11) In a recent epidemiological study which included 6062 cattle from 5 commercial beef processing plants (3892 carcasses) and 2170 registered cattle from 42 breeds., the K211 allele was not detected using a newly developed mass spectrometry assay specific for the E211K variant [12]. These data indicate a rather low prevalence of the E211K variant of less than 1 in 2000 cattle when using Bayesian analysis [12]. This newly developed assay system for K211 [12] will offer the possibility for genetic surveillance of cattle for rare pathogenic mutations that may be associated with BSE.

 

Materials and Methods

 

Animals

 

The animal B14842 (called U.S. BSE Alabama case), approximately 10 years old as determined by dentition, was a red crossbred (Bos indicus6Bos taurus) hybrid beef cow found in lateral recumbency on a farm in Alabama. She was euthanized by the attending veterinarian, the brainstem removed for BSE testing and shipped to the Georgia Veterinary Medical Diagnostic Laboratory, where it was found to be positive by a rapid enzyme-linked immunosorbent assay (ELISA)-based BSE test. The brainstem was then forwarded to the National Veterinary Services Laboratories in Ames, IA, USA, for confirmatory testing. The classical BSE case was reported previously [4].

 

ELISA test

 

The rapid BSE test used in the U.S. is the Platelia/TeSeETM ELISA BSE test (Bio-Rad, Hercules, CA, USA). Fresh samples from the brainstem were used for the analysis and the samples were treated with proteinase K (PK) in order to digest the PKsensitive normal prion protein, PrPc.

 

Imunoblot Analysis

 

Brain homogenates from the U.S. BSE Alabama case (animal B14842) were prepared from 1.1 gram of brainstem material and analyzed using the PrionicsH-Check Western Kit (Prionics, Schlieren, Switzerland) with modifications and the OIE-recommended Scrapie Associated Fibril (SAF)-Immunoblot method (http://www. oie.int/eng/normes/mmanual/A_summry.htm). Preparation and analysis of brainstem homogenate using both methods has been described previously [4]. Please note that the brain homogenates were treated with PK (2 U/ml) for 60 minutes at 37uC before Western Blot analysis in order to digest the PK-sensitive PrPc. As positive control samples, BSE-positive brain material from the U.S. BSE cases 2003 and 2004 as well as a sheep scrapie isolate were used. As negative controls, brain material from a BSE-negative cow was used.

 

Immunohistochemistry

 

Brain tissue was placed in 10% buffered formalin and after a minimum of 4 days of fixation appropriate sections of brainstem in the obex region were put in cassettes and kept in fresh formalin until they were processed for routine paraffin embedding. The procedure was described in detail previously [4]. The IHC results were interpreted as follows: (i) positive for PrPd: pink to red and (ii) background and negative for PrPd: only blue background. As positive controls, slides from the brainstem of a BSE-positive cow, obtained from the United Kingdom and from the U.S. BSE Case 2003 were used. As negative controls, slides from brainstem material of BSE-negative cattle and scrapie-negative sheep were used.

 

DNA isolation, PCR amplification and sequence analysis Genomic DNA was extracted from 200 ml of a 10% brain homogenate as described previously [4]. The fragment was sequenced in duplicate using the original two primers and two internal primers (available upon request) for a total of 8 reactions. Databases were searched using standard nucleotide-nucleotide BLAST at the National Center for Biotechnology Information Web Site (http://www.ncbi.nlm.nih.gov). The database is a collection of sequences from several sources, including GenBank and Reference Sequence. The nucleotide sequences of the Prnp gene of the U.S. BSE Alabama case was aligned using both CLUSTAL V and CLUSTAL W with the following GENBANK accession numbers: AY335912 (bovine), AY367641 (bovine), AF016227(elk), AY275712 (white-tailed deer), AF166334 (sheep), AJ567986 (sheep), and the Canadian BSE case [12] using Lasergene version 5.07 software (DNASTAR-Madison WI). Accession number

 

The GenBank accession number for the Prnp gene of U.S. BSE Alabama case is EU809428.

 

Acknowledgments

 

The authors would like to thank D. Clouser and K. Hassall for their excellent technical support and Dr. M. Kehrli for his encouragement and support. We thank Drs. T. Baron, S. Czub and T. Seuberlich for sharing DNA from atypical BSE cases. The authors also wish to thank the seven State/University Veterinary Diagnostic Laboratories for their efforts in screening U.S. cattle for the presence of BSE that enabled detection of this new allele.

 

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. Author Contributions

 

Conceived and designed the experiments: JAR SMH. Performed the experiments: JAR SMH. Analyzed the data: JAR SMH. Contributed reagents/materials/analysis tools: JAR. Wrote the paper: JAR SMH. References

 

1. Prusiner SB (1998) The prion diseases. Brain Pathol 8: 499–513.

 

2. Wells GA, Wilesmith JW (1995) The neuropathology and epidemiology of bovine spongiform encephalopathy. Brain Pathol 1995 5: 91–103.

 

3. Colchester AC, Colchester NT (2005) The origin of bovine spongiform encephalopathy: the human prion disease hypothesis. Lancet 366: 856–61.

 

4. Richt JA, Kunkle RA, Alt D, Nicholson EM, Hamir AN, et al. (2007) Identification and characterization of two bovine spongiform encephalopathy cases diagnosed in the United States. J Vet Diagn Invest 19: 142–154.

 

5. Jacobs JG, Langeveld JP, Biacabe AG, Acutis PL, Polak MP, et al. (2007) Molecular discrimination of atypical bovine spongiform encephalopathy strains from a geographical region spanning a wide area in Europe. J Clin Microbiol 45: 1821–1829.

 

6. Baron T, Biacabe AG, Arsac JN, Benestad S, Groschup MH (2007) Atypical transmissible spongiform encephalopathies (TSEs) in ruminants. Vaccine 25: 5625–5630.

 

7. Kovacs GG, Puopolo M, Ladogana A, Pocchiari M, Budka H, et al. (2005) Genetic prion disease: the EUROCJD experience. Hum Genet 118: 166–174.

 

8. Clawson ML, Richt JA, Baron T, Biacabe AG, Czub S, et al. (2008) Association of a bovine prion gene haplotype with atypical BSE. PLoS ONE 3: e1830. doi:10.1371/journal.pone.0001830.

 

9. Seuberlich T, Botteron C, Wenker C, Cafe´-Marcal VA, Oevermann A, et al. (2006) Spongiform encephalopathy in a miniature zebu. Emerg Infect Dis 12: 1950–1953.

 

10. Kong Q, Surewicz WK, Peterson RB, Zou W, Chen SG, et al. (2004) Inherited Prion Diseases. In: Prusiner SB, ed. Prion Biology and Diseases. New York: Cold Spring Harbor Monograph Series 41. 1050 p.

 

11. Nicholson EN, Brunelle BW, Richt JA, Kehrli Jr ME, Greenlee JJ (2008) Identification of a heritable polymorphism in bovine PRNP associated with genetic transmissible spongiform encephalopathy: evidence of heritable BSE. PLoS ONE 3: e2912. doi:10.1371/journal.pone.0002912.

 

12. Heaton MP, Keele JW, Harhay GP, Richt JA, Koohmaraie M, et al. (2008) Prevalence of the prion gene E211K variant in U.S. cattle. BMC Vet Res 4: 25.

 

13. Coulthart MB, Mogk R, Rancourt JM, Godal DL, Czub S (2003) Prion protein gene sequence of Canada’s first non-imported case of bovine spongiform encephalopathy (BSE). Genome 46: 1005–1009.

 

Table 1. DNA sequence analysis of codon 211 of the bovine Prnp and codon 200 of the human Prnp. Nucleotide Amino Acid Bovine majority G A A/G A A E211/E211 U.S. 2006 BSE case G A A/A A A E211/K211 Human majority G A G/G A G E200/E200 Human genetic CJD G A G/A A G E200/K200 doi:10.1371/journal.ppat.1000156.t001 Novel Bovine Prion Protein Gene Mutation PLoS

 

Figure 1. Analysis of brainstem samples from BSE-infected animals employing various methods. (A) Hybrid Immunoblot Analysis using enriched samples: Lanes 1–5: monoclonal antibody 6H4 (raised against human PrP residues 144–152), lanes 8–12 monoclonal antibody P4 (raised against ovine PrP residues 89–104): 1 = sheep scrapie control, 2 mg; 2 = classical BSE (2003 U.S. BSE case), 2 mg; 3 = H-type BSE case (2004 U.S. BSE case), 2 mg; 4 = U.S. BSE Alabama case, 1 mg; 5 = U.S. BSE Alabama case, 2.5 mg; 6,7 = protein weight maker; 8 = U.S. BSE Alabama case, 2.5 mg; 9 = U.S. BSE Alabama case, 1 mg; 10 = H-type BSE case (2004 U.S. BSE case), 2 mg; 11 = classical BSE (2003 U.S. BSE case), 2 mg; 12 = sheep scrapie control, 2 mg. (B) Immunohistochemistry of the U.S. BSE Alabama case (H-type BSE) using PrP-specific monoclonal antibody F99/97.6.1. Brainstem at the level of obex was examined. Bar = 35 mm. (C) Immunohistochemistry of a classical BSE case [4] using PrP-specific monoclonal antibody F99/97.6.1. Brainstem at the level of obex was examined. Spongiform changes are found in the area with highly PrPd-positive cells. Bar = 90 mm. doi:10.1371/journal.ppat.1000156.g001

 

Figure 2. Alignment of bovine, ovine, cervid and human Prnp sequences. (A) Nucleotide sequences. Standard single letter codes are used for nucleotides. Y = C or T; R = A or G; K =G or T; W= A or T. Boxed area indicates the 6th octapeptide-repeat of the bovine protein (U.S. BSE Alabama case and sequence AY335912). Additional Prnp sequences are as follows: AJ567986 (sheep), AF016227 (elk), Hsap M13899 (human, normal) and Hsap PRNPvar [human, variant; see [13]]. (B) Amino acid sequences. Standard IUPAC single letter codes are used for amino acids. Codon numbering refers to the most common six-copy octapeptide repeat allele for Bos Taurus. Boxed area indicates the 6th octapeptide repeat of the bovine protein [animals B14842 [4] and AY335912]. AJ567986 (sheep), AF016227 (elk), Hsap M13899 (human, normal) and Hsap PRNPvar [human, variant; see [13]] each contain a 5 octapeptide repeat region in the protein. doi:10.1371/journal.ppat.1000156.g002

 


 


 

2015

 

(c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. *** There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.

 


 

just saying, now let’s look at banned suspect mad cow in commerce in Alabama feed, as source for Alabama atypical gh type BSE, some 9 years post ruminant feed ban ;

 

BANNED MAD COW FEED IN COMMERCE IN ALABAMA

 

 Date: September 6, 2006 at 7:58 am PST PRODUCT

 

a) EVSRC Custom dairy feed, Recall # V-130-6;

 

b) Performance Chick Starter, Recall # V-131-6;

 

c) Performance Quail Grower, Recall # V-132-6;

 

d) Performance Pheasant Finisher, Recall # V-133-6.

 

CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.

 

REASON

 

Dairy and poultry feeds were possibly contaminated with ruminant based protein.

 

VOLUME OF PRODUCT IN COMMERCE 477.72 tons

 

DISTRIBUTION AL

 

______________________________

 


 

PRODUCT Bulk custom dairy pre-mixes,

 

Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete. REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE 350 tons

 

DISTRIBUTION AL and MS

 

______________________________

 

PRODUCT

 

a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb. bags, Recall # V-121-6;

 

b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6;

 

c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6;

 

d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;

 

e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;

 

f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;

 

g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6

 

CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.

 

REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".

 

VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags

 

DISTRIBUTION AL, GA, MS, and TN

 

END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006

 

###

 


 

Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006

 

Date: August 6, 2006 at 6:16 pm PST PRODUCT

 

a) CO-OP 32% Sinking Catfish, Recall # V-100-6;

 

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;

 

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;

 

d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;

 

e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;

 

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;

 

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;

 

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;

 

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;

 

j) CO-OP LAYING CRUMBLES, Recall # V-109-6;

 

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;

 

l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;

 

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE

 

Product manufactured from 02/01/2005 until 06/06/2006

 

RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.

 

REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".

 

VOLUME OF PRODUCT IN COMMERCE 125 tons

 

DISTRIBUTION AL and FL

 

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

 

###

 


 

MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67

 

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II

 

______________________________

 

PRODUCT

 

a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;

 

b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;

 

c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6;

 

d) Feather Meal, Recall # V-082-6 CODE

 

a) Bulk

 

b) None

 

c) Bulk

 

d) Bulk

 

RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.

 

REASON

 

Possible contamination of animal feeds with ruminent derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons

 

DISTRIBUTION Nationwide

 

END OF ENFORCEMENT REPORT FOR July 12, 2006

 

###

 


 

10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

 

Date: March 21, 2007 at 2:27 pm PST

 

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II

 

___________________________________

 

PRODUCT

 

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007

 

CODE

 

Cattle feed delivered between 01/12/2007 and 01/26/2007

 

RECALLING FIRM/MANUFACTURER

 

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

 

Firm initiated recall is ongoing.

 

REASON

 

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

 

VOLUME OF PRODUCT IN COMMERCE

 

42,090 lbs.

 

DISTRIBUTION

 

WI

 

___________________________________

 

PRODUCT

 

Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

 

CODE

 

The firm does not utilize a code - only shipping documentation with commodity and weights identified.

 

RECALLING FIRM/MANUFACTURER

 

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

 

REASON

 

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

 

VOLUME OF PRODUCT IN COMMERCE

 

9,997,976 lbs.

 

DISTRIBUTION

 

ID and NV

 

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

 


 

Tuesday, March 2, 2010

 

Animal Proteins Prohibited in Ruminant Feed/Adulterated/Misbranded Rangen Inc 2/11/10 USA

 


 

Monday, March 1, 2010

 

ANIMAL PROTEIN I.E. MAD COW FEED IN COMMERCE A REVIEW 2010

 


 

Terry S. Singeltary Sr. (Submitted question): Monday, April 5, 2010

 

Update on Feed Enforcement Activities to Limit the Spread of BSE April 5, 2010

 


 

Friday, April 23, 2010

 

Upcoming BSE Webinar on Thursday, April 22, 2010 a review

 


 

P.9.21

 

Molecular characterization of BSE in Canada

 

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

 

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

 

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

 

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

 

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.

 

P.5.21

 

Parallels between different forms of sheep scrapie and types of Creutzfeldt-Jakob disease (CJD)

 

Wiebke M. Wemheuer1, Sylvie L. Benestad2, Arne Wrede1, Wilhelm E. Wemheuer3, Tatjana Pfander1, Bjørn Bratberg2, Bertram Brenig3,Walter J. Schulz-Schaeffer1 1University Medical Center Goettingen, Germany; 2Institute of Veterinary Medicine Oslo, Norway; 3Institute of Veterinary Medicine Goettingen, Germany

 

Background: Scrapie in sheep and goats is often regarded as the archetype of prion diseases. In 1998, a new form of scrapie – atypical/Nor98 scrapie – was described that differed from classical scrapie in terms of epidemiology, Western blot profile, the distribution of pathological prion protein (PrPSc) in the body and its stability against proteinase K. In a similar way, distinct disease types exist in sporadic Creutzfeldt-Jakob disease (CJD). They differ with regard to their clinical outcome, Western blot profile and PrPSc deposition pattern in the central nervous system (CNS). Objectives: The comparison of PrPSc deposits in sheep scrapie and human sporadic CJD.

 

Methods: Tissues of the CNS of sheep with classical scrapie, sheep with atypical/Nor98 scrapie and 20 patients with sporadic CJD were examined using the sensitive Paraffin Embedded Tissue (PET) blot method. The results were compared with those obtained by immunohistochemistry. With the objective of gaining information on the protein conformation, the PrPSc of classical and atypical/Nor98 sheep scrapie and sporadic CJD was tested for its stability against denaturation with guanidine hydrochloride (GdnHCl) using a Membrane Adsorption Assay.

 

Results: The PrPSc of atypical/Nor98 scrapie cases and of CJD prion type 1 patients exhibits a mainly reticular/synaptic deposition pattern in the brain and is relatively sensitive to denaturation with GdnHCl. In contrast classical scrapie cases and CJD prion type 2 patients have a more complex PrPSc deposition pattern in common that consists of larger PrPSc aggregates and the PrPSc itself is comparatively stable against denaturation.

 

Discussion: The similarity between CJD types and scrapie types indicates that at least two comparable forms of the misfolded prion protein exist beyond species barriers and can elicit prion diseases. It seems therefore reasonable to classify classical and atypical/Nor98 scrapie – in analogy to the existing CJD types – as different scrapie types.

 


 

Monday, December 14, 2009

 

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

 


 

Monday, December 14, 2009

 

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

 

hmmm, this is getting interesting now...

 

> Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine (reticular) deposits,

 

see also ;

 

> All of the Heidenhain variants were of the methionine/ methionine type 1 molecular subtype.

 


 

 see full text ;

 

Monday, December 14, 2009

 

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

 


 

Epidemiology of Scrapie in the United States 1977

 


 


 

Tuesday, April 28, 2009

 

Nor98-like Scrapie in the United States of America

 


 

P03.141

 

Aspects of the Cerebellar Neuropathology in Nor98

 

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

 

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

 

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

 


 

PR-26

 

NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS

 

R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway

 

Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion.

 

*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.

 

119

 


 

A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes

 

Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations

 

*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway

 

***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)

 

Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. *** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

 


 

Monday, December 1, 2008

 

When Atypical Scrapie cross species barriers

 

Authors

 

Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.

 

Content

 

Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

 

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

 

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

 

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

 

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

 

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

 

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.

 


 

P.4.23

 

Transmission of atypical BSE in humanized mouse models

 

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

 

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.

 

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

 

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time. The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

 

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice.

 

BSE-H is also transmissible in our humanized Tg mice.

 

The possibility of more than two atypical BSE strains will be discussed.

 

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.

 

O.4.4

 

PrPSc distribution pattern in cattle experimentally challenged with H-type and L-type atypical BSE

 

Anne Buschmann1, Ute Ziegler1, Leila McIntyre2, Markus Keller1, Ron Rogers3, Bob Hills3, Martin H. Groschup1 1Friedrich-Loeffler-Institut, INEID, Germany; 2Faculty of Veterinary Medicine, University of Calgary, Canada; 3Health Canada, Ottawa, Canada

 

Background: After the detection of two novel BSE forms designated H-type and L-type BSE, the question of the pathogenesis and the agent distribution in cattle affected with these forms was fully open. From initial studies, it was already known that the PrPSc distribution in L-type BSE affected cattle differed from that known for classical BSE (C-type) where the obex region always displays the highest PrPSc concentrations. In contrast in L-type BSE cases, the thalamus and frontal cortex regions showed the highest levels of the pathological prion protein, while the obex region was only weakly involved. No information was available on the distribution pattern in H-type BSE.

 

Objectives: To analyse the PrPSc and infectivity distribution in cattle experimentally challenged with H-type and L-type BSE.

 

Methods: We analysed CNS and peripheral tissue samples collected from cattle that were intracranially challenged with Htype (five animals) and L-type (six animals) using a commercial BSE rapid test (IDEXX HerdChek), immunohistochemistry (IHC) and a highly sensitive Western blot protocol including a phosphotungstic acid precipitation of PrPSc (PTA-WB). Samples collected during the preclinical and the clinical stages of the disease were examined. For the detection of BSE infectivity, selected samples were also inoculated into highly sensitive Tgbov XV mice overexpressing bovine prion protein (PrPC).

 

Results: Analysis of a collection of fifty samples from the peripheral nervous, lymphoreticular, digestive, reproductive, respiratory and musculo-skeletal systems by PTA-WB, IDEXXHerdChek BSE EIA and IHC revealed a general restriction of the PrPSc accumulation to the central nervous system.

 

Discussion: Our results on the PrPSc distribution in peripheral tissues of cattle affected with H-type and L-type BSE are generally in accordance with what has been known for C-type BSE. Bioassays are ongoing in highly sensitive transgenic mice in order to reveal infectivity.

 

O.11.3

 

Infectivity in skeletal muscle of BASE-infected cattle

 

Silvia Suardi1, Chiara Vimercati1, Fabio Moda1, Ruggerone Margherita1, Ilaria Campagnani1, Guerino Lombardi2, Daniela Gelmetti2, Martin H. Groschup3, Anne Buschmann3, Cristina Casalone4, Maria Caramelli4, Salvatore Monaco5, Gianluigi Zanusso5, Fabrizio Tagliavini1 1Carlo Besta” Neurological Institute,Italy; 2IZS Brescia, Italy; 33FLI Insel Riems, D, Germany; 4CEA-IZS Torino, Italy; 5University of Verona, Italy

 

Background: BASE is an atypical form of bovine spongiform encephalopathy caused by a prion strain distinct from that of BSE. Upon experimental transmission to cattle, BASE induces a previously unrecognized disease phenotype marked by mental dullness and progressive atrophy of hind limb musculature. Whether affected muscles contain infectivity is unknown. This is a critical issue since the BASE strain is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible.

 

Objectives: To investigate the distribution of infectivity in peripheral tissues of cattle experimentally infected with BASE. Methods: Groups of Tg mice expressing bovine PrP (Tgbov XV, n= 7-15/group) were inoculated both i.c. and i.p. with 10% homogenates of a variety of tissues including brain, spleen, cervical lymph node, kidney and skeletal muscle (m. longissimus dorsi) from cattle intracerebrally infected with BASE. No PrPres was detectable in the peripheral tissues used for inoculation either by immunohistochemistry or Western blot.

 

Results: Mice inoculated with BASE-brain homogenates showed clinical signs of disease with incubation and survival times of 175±15 and 207±12 days. Five out of seven mice challenged with skeletal muscle developed a similar neurological disorder, with incubation and survival times of 380±11 and 410±12 days. At present (700 days after inoculation) mice challenged with the other peripheral tissues are still healthy. The neuropathological phenotype and PrPres type of the affected mice inoculated either with brain or muscle were indistinguishable and matched those of Tgbov XV mice infected with natural BASE.

 

Discussion: Our data indicate that the skeletal muscle of cattle experimentally infected with BASE contains significant amount of infectivity, at variance with BSE-affected cattle, raising the issue of intraspecies transmission and the potential risk for humans. Experiments are in progress to assess the presence of infectivity in skeletal muscles of natural BASE.

 

P.5.3

 

Differences in the expression levels of selected genes in the brain tissue of cattle naturally infected with classical and atypical BSE.

 

Magdalena Larska1, Miroslaw P. Polak1, Jan F. Zmudzinski1, Juan M. Torres2 1National Veterinary Institute, Poland; 2CISA/INIA

 

Background: Recently cases of BSE in older cattle named BSE type L and type H were distinguished on the basis of atypical glycoprofiles of PrPres. The nature of those strains is still not fully understood but it is suspected that the atypical BSE cases are sporadic. Hitherto most BSE cases were studied in respect to the features of PrPSc. Here we propose gene expression profiling as a method to characterize and distinguish BSE strains.

 

Objectives: The aim of the study was to compare the activities of some factors which are known to play a role in TSE’s pathogenesis in order to distinguish the differences/similarities between all BSE types.

 

Methods: 10 % homogenate of brain stem tissue collected from obex region of medulla oblongata from 20 naturally infected BSE cows (8 assigned as classical BSE, other 8 and 4 infected with atypical BSE L type and H type respectively) was used in the study. As negative control animals we’ve used 8 animals in the age between 2.5 and 13 years. The genes were relatively quantified using SYBR Green real time RT-PCR. Raw data of Ct values was transformed into normalized relative quantities using Qbase Plus®. Results and

 

Discussion: In most of the tested genes significant differences in the expression levels between the brain stem of healthy cattle and animals infected with different BSE types were observed. In c-type BSE in comparison to healthy and atypical BSE the overexpression of the gene of bcl-2, caspase 3, 14-3-3 and tylosine kinase Fyn was significant.

 

Simultaneously in atypical BSEs type-L and type-H the levels of prion protein, Bax and LPR gene was elevated in comparison to c-BSE. Additionally L-BSE was characterized by the overexpression of STI1 and SOD genes compared to the other of BSE types. The downregulation of the gene encoding NCAM1 was observed in all BSE types in comparison to healthy cows. Different gene expression profiles of bovine brains infected with classical and atypical BSE indicates possible different pathogenesis or source of the disease.

 

O.10.1

 

Transmission of uncommon forms of bovine prions to transgenic mice expressing human PrP: questions and progress

 

Vincent Béringue, Hubert Laude INRA, UR 892, Virologie Immunologie Moléculaires, France

 

The active, large-scale testing of livestock nervous tissues for the presence of protease-resistant prion protein (PrPres) has led to the recognition of 2 uncommon PrPres molecular signatures, termed H-type and L-type BSE. Their experimental transmission to various transgenic and inbred mouse lines unambiguously demonstrated the infectious nature of such cases and the existence of distinct prion strains in cattle. Like the classical BSE agent, H- and L-type (or BASE) prions can propagate in heterologous species. In addition L-type prions acquire molecular and neuropathologic phenotypic traits undistinguishable from BSE or BSE-related agents upon transmission to transgenic mice expressing ovine PrP (VRQ allele) or wild-type mice. An understanding of the transmission properties of these newly recognized prions when confronted with human PrP sequence was therefore needed. Toward this end, we inoculated mice expressing human PrP Met129 with several field isolates. Unlike classical BSE agent, L-type prions appeared to propagate in these mice with no obvious transmission barrier. In contrast, we repeatedly failed to infect them with Htype prions. Ongoing investigations aim to extend the knowledge on these uncommon strains: are these agents able to colonize lymphoid tissue, a potential key factor for successful transmission by peripheral route; is there any relationship between these assumedly sporadic forms of TSE in cattle and some sporadic forms of human CJD are among the issues that need to be addressed for a careful assessment of the risk for cattle-to-human transmission of H- and L-type prions.

 


 

P02.35

 

Molecular Features of the Protease-resistant Prion Protein (PrPres) in H-type BSE

 

Biacabe, A-G1; Jacobs, JG2; Gavier-Widén, D3; Vulin, J1; Langeveld, JPM2; Baron, TGM1 1AFSSA, France; 2CIDC-Lelystad, Netherlands; 3SVA, Sweden

 

Western blot analyses of PrPres accumulating in the brain of BSE-infected cattle have demonstrated 3 different molecular phenotypes regarding to the apparent molecular masses and glycoform ratios of PrPres bands. We initially described isolates (H-type BSE) essentially characterized by higher PrPres molecular mass and decreased levels of the diglycosylated PrPres band, in contrast to the classical type of BSE. This type is also distinct from another BSE phenotype named L-type BSE, or also BASE (for Bovine Amyloid Spongiform Encephalopathy), mainly characterized by a low representation of the diglycosylated PrPres band as well as a lower PrPres molecular mass. Retrospective molecular studies in France of all available BSE cases older than 8 years old and of part of the other cases identified since the beginning of the exhaustive surveillance of the disease in 20001 allowed to identify 7 H-type BSE cases, among 594 BSE cases that could be classified as classical, L- or H-type BSE. By Western blot analysis of H-type PrPres, we described a remarkable specific feature with antibodies raised against the C-terminal region of PrP that demonstrated the existence of a more C-terminal cleaved form of PrPres (named PrPres#2 ), in addition to the usual PrPres form (PrPres #1). In the unglycosylated form, PrPres #2 migrates at about 14 kDa, compared to 20 kDa for PrPres #1. The proportion of the PrPres#2 in cattle seems to by higher compared to the PrPres#1. Furthermore another PK-resistant fragment at about 7 kDa was detected by some more N-terminal antibodies and presumed to be the result of cleavages of both N- and C-terminal parts of PrP. These singular features were maintained after transmission of the disease to C57Bl/6 mice. The identification of these two additional PrPres fragments (PrPres #2 and 7kDa band) reminds features reported respectively in sporadic Creutzfeldt-Jakob disease and in Gerstmann-Sträussler-Scheinker (GSS) syndrome in humans.

 


 

P2-110

 

TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY TO MICROCEBUS MURINUS, A NON-HUMAN PRIMATE. DEVELOPMENT OF CLINICAL SYMPTOMS AND TISSUE DISTRIBUTION OF PRPRES

 

Nadine Mestre-Frances1, Anne-Gaelle Biacabe2, Sylvie Rouland1, Thierry Baron2, Jean-Michel Verdier1, 1INSERM U710, Montpellier, France; 2AFSSA, Lyon, France. Contact e-mail: nfrances@univmontp2. fr

 

Background: Atypical BSE cases have been observed in Europe, Japan and North America. They differ in their PrPres profiles from those found in classical BSE. These atypical cases fall into 2 types, depending on the molecular mass of the unglycosylated PrPres band observed by Western blot: the L-type (lower molecular mass than the typical BSE cases) and H-type (higher molecular mass than the typical BSE cases).

 

Methods: Height animals (4 males and 4 females) were intracerebrally inoculated with 50 l of a 10% brain homogenates of atypical (L and H-type) French BSE cases.

 

Results: Only one of the four lemurs challenge with H-type BSE died without clinical signs after 19 months post inoculation (mpi), the 4 animals inoculated with L-type BSE died at 19 mpi (2 males) and 22 mpi (2 females). Three months before their sacrifice, they developed blindness, tremor, abnormal posture, incoordinated movements, balance loss. Symptoms get worse according to the disease progression, until severe ataxia. The brain tissue were biochemically and immunocytochemically investigated for PrPres. For the H-types, spongiform changes without PrPres accumulation were observed in the brainstem. Western blot analysis confirmed that no PrPres was detected into the brain. For the L-types, severe spongiosis was evidenced into the thalamus, the striatum, the mesencephalon, and the brainstem, whereas into the cortex the spongiosis was evidenced, but the vacuolisation was weaker. Strong deposits of PrPres was detected by western blot, PET-blot and immunocytochemistry in the CNS: dense accumulation was observed into the thalamus, the striatum, and the hippocampus whereas in the cerebral cortex, PrPres was prominently accumulated in plaques. Western blot analysis confirmed the presence of protease-resistant prion protein.

 

Conclusions: L-type infected lemurs showed survival times considerably shorter than for classical BSE strain, indicating that the disease is caused by a very virulent distinct prion strain.

 


 

 Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a Primate

 

Emmanuel E. Comoy1*, Cristina Casalone2, Nathalie Lescoutra-Etchegaray1, Gianluigi Zanusso3, Sophie Freire1, Dominique Marcé1, Frédéric Auvré1, Marie-Magdeleine Ruchoux1, Sergio Ferrari3, Salvatore Monaco3, Nicole Salès4, Maria Caramelli2, Philippe Leboulch1,5, Paul Brown1, Corinne I. Lasmézas4, Jean-Philippe Deslys1

 

1 Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France, 2 Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy, 3 Policlinico G.B. Rossi, Verona, Italy, 4 Scripps Florida, Jupiter, Florida, United States of America, 5 Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

 

Abstract Top Background Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne transmission of prions from slaughtered cattle with classical Bovine Spongiform Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic in aging cattle, were recently identified at slaughterhouses throughout Europe and North America, raising a question about human susceptibility to these new prion strains.

 

Methodology/Principal Findings Brain homogenates from cattle with classical BSE and atypical (BASE) infections were inoculated intracerebrally into cynomolgus monkeys (Macacca fascicularis), a non-human primate model previously demonstrated to be susceptible to the original strain of cBSE. The resulting diseases were compared in terms of clinical signs, histology and biochemistry of the abnormal prion protein (PrPres). The single monkey infected with BASE had a shorter survival, and a different clinical evolution, histopathology, and prion protein (PrPres) pattern than was observed for either classical BSE or vCJD-inoculated animals. Also, the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine.

 

Conclusion/Significance Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.

 

Citation: Comoy EE, Casalone C, Lescoutra-Etchegaray N, Zanusso G, Freire S, et al. (2008) Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a Primate. PLoS ONE 3(8): e3017. doi:10.1371/journal.pone.0003017

 

Editor: Neil Mabbott, University of Edinburgh, United Kingdom

 

Received: April 24, 2008; Accepted: August 1, 2008; Published: August 20, 2008

 

Copyright: © 2008 Comoy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Funding: This work has been supported by the Network of Excellence NeuroPrion.

 

Competing interests: CEA owns a patent covering the BSE diagnostic tests commercialized by the company Bio-Rad.

 

* E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000110/!x-usc:mailto:emmanuel.comoy@cea.fr

 


 

 Saturday, December 01, 2007

 

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model

 

Volume 13, Number 12–December 2007 Research

 

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model

 

Thierry Baron,* Anna Bencsik,* Anne-Gaëlle Biacabe,* Eric Morignat,* andRichard A. Bessen†*Agence Française de Sécurité Sanitaire des Aliments–Lyon, Lyon, France; and†Montana State University, Bozeman, Montana, USA

 

Abstract

 

Transmissible mink encepholapathy (TME) is a foodborne transmissible spongiform encephalopathy (TSE) of ranch-raised mink; infection with a ruminant TSE has been proposed as the cause, but the precise origin of TME is unknown. To compare the phenotypes of each TSE, bovine-passaged TME isolate and 3 distinct natural bovine spongiform encephalopathy (BSE) agents (typical BSE, H-type BSE, and L-type BSE) were inoculated into an ovine transgenic mouse line (TgOvPrP4). Transgenic mice were susceptible to infection with bovine-passaged TME, typical BSE, and L-type BSE but not to H-type BSE. Based on survival periods, brain lesions profiles, disease-associated prion protein brain distribution, and biochemical properties of protease-resistant prion protein, typical BSE had a distint phenotype in ovine transgenic mice compared to L-type BSE and bovine TME.The similar phenotypic properties of L-type BSE and bovine TME in TgOvPrP4 mice suggest that L-type BSE is a much more likely candidate for the origin of TME than is typical BSE.

 

snip...

 

Conclusion

 

These studies provide experimental evidence that the Stetsonville TME agent is distinct from typical BSE but has phenotypic similarities to L-type BSE in TgOvPrP4 mice. Our conclusion is that L-type BSE is a more likely candidate for a bovine source of TME infection than typical BSE. In the scenario that a ruminant TSE is the source for TME infection in mink, this would be a second example of transmission of a TSE from ruminants to non-ruminants under natural conditions or farming practices in addition to transmission of typical BSE to humans, domestic cats, and exotic zoo animals(37). The potential importance of this finding is relevant to L-type BSE, which based on experimental transmission into humanized PrP transgenic mice and macaques, suggests that L-type BSE is more pathogenic for humans than typical BSE (24,38).

 


 

Saturday, February 28, 2009NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS TYPE BSE

 

"All of the 15 cattle tested showed that the brains had abnormally accumulated PrP" 2009 SEAC 102/2

 


 

Wednesday, October 08, 2008

 

Idiopathic Brainstem Neuronal Chromatolysis (IBNC): a novel prion protein related disorder of cattle?

 


 

 >>>Conclusions: L-type infected lemurs showed survival times considerably shorter than for classical BSE strain, indicating that the disease is caused by a very virulent distinct prion strain. >>>

 

seems the survival time was the same for the h-type BSE and the l-type BSE i.e. 19 months post inoculation (mpi), interesting. ...TSS

 

 Wednesday, March 31, 2010

 

Atypical BSE in Cattle / position: Post Doctoral Fellow

 


 

Wednesday, February 24, 2010

 

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America 14th

 

ICID International Scientific Exchange Brochure -

 


 

National Prion Disease Pathology Surveillance Center Cases Examined1 (July 31, 2010)

 

(please see video at the bottom of this url...tss)

 


 

Tuesday, August 03, 2010

 

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein

 


 

Monday, August 9, 2010

 

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more Prionbaloney ?

 


 

Wednesday, July 28, 2010

 

re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010

 


 

Wednesday, July 28, 2010

 

Atypical prion proteins and IBNC in cattle DEFRA project code SE1796 FOIA Final report

 


 

Thursday, June 24, 2010

 

Accumulation of L-type Bovine Prions in Peripheral Nerve Tissues

 

Volume 16, Number 7–July 2010

 


 

To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

 


 

Wednesday, March 31, 2010

 

Atypical BSE in Cattle

 


 

Let's look at some sound science on atypical Nor-98 Scrapie, shall we ;

 

[Although atypical scrapie is not yet ruled out, it is important to realize this is a type of scrapie that thus far has only tended to appear as a sporadic condition in older animals. Currently it has not been shown to follow the same genetic tendencies for propagation as the usual scrapie.

 

However, the atypical phenotypic appearance has been shown to be preserved on experimental passage.

 

Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries, as Australia may join that list. It is likely that this case will be sent to the UK for definitive conformation.

 

[Ref: M Simmons, T Konold, L Thurston, et al. BMC Veterinary Research 2010, 6:14 [provisional abstract available at ]

 

"Background ----------- "Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease. However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. [Many of the neurological diseases can be transmitted by intracerebral inoculation, which causes this moderator to approach intracerebral studies as a tool for study, but not necessarily as a direct indication of transmissibility of natural diseases. - Mod.TG]

 

"The 1st successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007.

 

"Results -------- "This study demonstrates that atypical scrapie has distinct clinical, pathological, and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype.

 

"Conclusions ------------ Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage."

 

Lastly, this moderator wishes to thank Terry Singletary for some of his behind the scenes work of providing citations and references for this posting. - Mod.TG]

 


 

Saturday, June 5, 2010

 

Research Project: Transmissible Spongiform Encephalopathies: Identification of atypical scrapie in Canadian sheep

 


 

Sunday, April 18, 2010

 

SCRAPIE AND ATYPICAL SCRAPIE TRANSMISSION STUDIES A REVIEW 2010

 


 

If the scrapie agent is generated from ovine DNA and thence causes disease in other species, then perhaps, bearing in mind the possible role of scrapie in CJD of humans (Davinpour et al, 1985), scrapie and not BSE should be the notifiable disease. ...

 


 

 Tuesday, July 27, 2010

 

Spontaneous generation of mammalian prions

 


 

 Thursday, August 12, 2010

 

Seven main threats for the future linked to prions

 


 


 

2015

 

(c) The commonest form of CJD occurs as a sporadic disease, the cause of which is unknown, although genetic factors (particularly the codon 129 polymorphism in the prion protein gene (PRNP)) influence disease susceptibility. The familial forms of human TSEs (see Box 1) appear to have a solely genetic origin and are closely associated with mutations or insertions in the PRNP gene. Most, but not all, of the familial forms of human TSEs have been transmitted experimentally to animals. *** There are no known familial or genetic TSEs of animals, although polymorphisms in the PRNP gene of some species (sheep for example) may influence the length of the incubation period and occurrence of disease.

 


 

31 Jan 2015 at 20:14 GMT

 

*** Ruminant feed ban for cervids in the United States? ***

 

31 Jan 2015 at 20:14 GMT

 


 

spontaneous atypical BSE ???

 

don’t let anyone fool you. spontaneous TSE prion disease is a hoax in natural cases, never proven.

 

all one has to do is look at France. France is having one hell of an epidemic of atypical BSE, probably why they stopped testing for BSE, problem solved $$$ same as the USA, that’s why they stopped testing for BSE mad cow disease in numbers they could find any with, after those atypical BSE cases started showing up. shut down the testing to numbers set up by OIE that are so low, you could only by accident find a case of BSE aka mad cow disease. and this brilliant idea by the WHO et al, to change the name of mad cow disease, thinking that might change things is preposterous. it’s all about money now folks, when the OIE, USDA and everyone else went along and made the TSE prion disease aka mad cow type disease a legal trading commodity by the BSE MRR policy, I would say everyone bit off more then they can chew, and they will just have to digest those TSE Prions coming from North America, and like it, and just prey you don’t get a mad cow type disease i.e. Transmissible Spongiform Encephalopathy TSE prion disease in the decades to come, and or pass it to some other poor soul via the iatrogenic medical surgical tissue friendly fire mode of transmission i.e. second hand transmission. it’s real folks, just not documented much, due to lack of trace back efforts. all iatrogenic cjd is, is sporadic cjd, until the iatrogenic event is tracked down and documented, and put into the academic and public domain, which very seldom happens. ...

 

As of December 2011, around 60 atypical BSE cases have currently been reported in 13 countries, *** with over one third in France.

 


 

FRANCE STOPS TESTING FOR MAD COW DISEASE BSE, and here’s why, to many spontaneous events of mad cow disease $$$

 

so 20 cases of atypical BSE in France, compared to the remaining 40 cases in the remaining 12 Countries, divided by the remaining 12 Countries, about 3+ cases per country, besides Frances 20 cases. you cannot explain this away with any spontaneous BSe. ...TSS

 

Sunday, October 5, 2014

 

France stops BSE testing for Mad Cow Disease

 


 

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;

 


 

Saturday, May 09, 2015

 

Expression of genes involved in the T cell signalling pathway in circulating immune cells of cattle 24 months following oral challenge with Bovine Amyloidotic Spongiform Encephalopathy (BASE)

 


 

Sunday, May 3, 2015

 

PRION2015 FORT COLLINS

 


 

Sunday, March 29, 2015

 

Uncommon prion disease induced in macaque ten years after scrapie inoculation

 


 

Friday, January 30, 2015

 

*** Scrapie: a particularly persistent pathogen ***

 


 

Friday, February 20, 2015

 

APHIS Freedom of Information Act (FOIA) Appeal Mouse Bio-Assays 2007-00030-A Sheep Imported From Belgium and the Presence of TSE Prion Disease Kevin Shea to Singeltary 2015

 


 

Tuesday, December 16, 2014

 

 Evidence for zoonotic potential of ovine scrapie prions

 

 Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

 Abstract

 

 Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human ​prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 

 Subject terms: Biological sciences• Medical research At a glance

 


 

 why do we not want to do TSE transmission studies on chimpanzees $

 

 5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 

 snip...

 

 R. BRADLEY

 


 

 Suspect symptoms

 

 What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?

 

 28 Mar 01 Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.

 

 Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.

 

 "This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb...

 

 2001

 

 Suspect symptoms

 

 What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?

 

 28 Mar 01

 

 Like lambs to the slaughter

 

 31 March 2001

 

 by Debora MacKenzie Magazine issue 2284.

 

 FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.

 

 Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.

 

 Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.

 

 "This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.

 

 Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.

 

 Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.

 

 As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.

 

 "The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.

 

 But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.

 

 People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.

 

 But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."

 

 There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.

 

 Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.

 


 

 

Friday, May 22, 2015

 

*** Chronic Wasting Disease and Program Updates - 2014 NEUSAHA Annual Meeting 12-14 May 2014 ***

 


 

 

 Thursday, March 20, 2014

 

 CHRONIC WASTING DISEASE CWD TSE PRION OF CERVID AND THE POTENTIAL FOR HUMAN TRANSMISSION THEREFROM 2014

 


 

 Tuesday, July 01, 2014

 

 *** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND POTENTIAL RISK FACTORS THERE FROM ***

 


 

Friday, May 15, 2015

 

Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

 

Report

 


 

land spreading of the TSE prion

 


 

 Thursday, July 03, 2014

 

 *** How Chronic Wasting Disease is affecting deer population and what’s the risk to humans and pets? ***

 


 

 Thursday

 

 CWD TO HUMANS, AND RISK FACTORS THERE FROM (see latest science)

 

 Tuesday, November 04, 2014

 

 *** Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

 


 

 CWD TO HUMANS, AND RISK FACTORS THERE FROM (see latest science)

 

 Monday, March 09, 2015

 

 *** Chronic Wasting Disease CWD TSE prion and human animal risk factor there from ***

 


 

 Thursday, April 30, 2015

 

 *** Immediate and ongoing detection of prions in the blood of hamsters and deer following oral, nasal, or blood inoculations

 


 

 Friday, January 30, 2015

 

 *** Scrapie: a particularly persistent pathogen ***

 


 

 Sunday, April 12, 2015

 

 *** Research Project: Transmission, Differentiation, and Pathobiology of Transmissible Spongiform Encephalopathies 2014 Annual Report ***

 


 

 Saturday, April 11, 2015

 

 *** ISU veterinary researchers study retinal scans as early detection method for mad cow disease

 


 

 Tuesday, May 19, 2015

 

*** COUNTRY OF ORIGIN LABELING COOL H.R. 2393 Agriculture Chairman K. Michael Conaway (R-TX) Fears of US imports infected with mad cow disease is emerging as an issue in trans-Pacific trade talks

 


 

 Saturday, May 09, 2015

 

Psychiatric Symptoms in Patients With Sporadic Creutzfeldt-Jakob Disease

 


 

 NORTH AMERICA is awash with the Transmissible Spongiform Encephalopathy TSE Prion disease in many species, they are spreading, and humans and other animals have become more and more exposed to the TSE Prion by many different routes and sources.

 

CAN YOU SAY IATROGENIC !

 

Tuesday, May 26, 2015

 

*** Minimise transmission risk of CJD and vCJD in healthcare settings Last updated 15 May 2015 ***

 


 

Tuesday, April 21, 2015

 

*** Transmissible Spongiform Encephalopathy Advisory Committee TSEAC MEETING SCHEDULED FOR June 1, 2015

 


 

 Sunday, April 06, 2014

 

 SPORADIC CJD and the potential for zoonotic transmission there from, either directly or indirectly via friendly fire iatrogenic mode, evidence to date

 


 

Friday, January 10, 2014

 

 *** vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

 


 

PRION2015 FORT COLLINS

 


 


 


 

 Wednesday May 27

 

 14:45 Jean-Phillipe Deslys Atomic Energy Commission, France,

 

 Transmission of prions to primates after extended silent incubation periods: * IMPLICATIONS FOR BSE AND SCRAPIE RISK ASSESSMENT IN HUMAN POPULATIONS.

 

 16:45

 

 Quingzhong Kong Case Western Reserve University

 

 Zoonotic Potential of CWD Prions

 


 

 *** Kuru Video ***

 

 Kuru: The Science and The Sorcery

 


 

 *** Scrapie Video

 


 

 *** Human Mad Cow Video

 


 

 *** USA sporadic CJD MAD COW DISEASE HAS HUGE PROBLEM Video

 


 

 2014

 

 ***Moreover, L-BSE has been transmitted more easily to transgenic mice overexpressing a human PrP [13,14] or to primates [15,16] than C-BSE.

 

 ***It has been suggested that some sporadic CJD subtypes in humans may result from an exposure to the L-BSE agent.

 

 *** Lending support to this hypothesis, pathological and biochemical similarities have been observed between L-BSE and an sCJD subtype (MV genotype at codon 129 of PRNP) [17], and between L-BSE infected non-human primate and another sCJD subtype (MM genotype) [15].

 

 snip...

 


 

 Monday, October 10, 2011

 

 EFSA Journal 2011 The European Response to BSE: A Success Story

 

 snip...

 

 EFSA and the European Centre for Disease Prevention and Control (ECDC) recently delivered a scientific opinion on any possible epidemiological or molecular association between TSEs in animals and humans (EFSA Panel on Biological Hazards (BIOHAZ) and ECDC, 2011). This opinion confirmed Classical BSE prions as the only TSE agents demonstrated to be zoonotic so far

 

 *** but the possibility that a small proportion of human cases so far classified as "sporadic" CJD are of zoonotic origin could not be excluded.

 

 *** Moreover, transmission experiments to non-human primates suggest that some TSE agents in addition to Classical BSE prions in cattle (namely L-type Atypical BSE, Classical BSE in sheep, transmissible mink encephalopathy (TME) and chronic wasting disease (CWD) agents) might have zoonotic potential.

 

 snip...

 


 


 

 Thursday, August 12, 2010

 

 Seven main threats for the future linked to prions

 

 First threat

 

 The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.

 

 *** Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans.

 

 *** These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.

 

 Second threat

 

 snip...

 


 

 Sunday, November 23, 2014

 

*** Confirmed Variant Creutzfeldt-Jakob Disease (variant CJD) Case in Texas in June 2014 confirmed as USA case NOT European ***

 


 

Monday, November 3, 2014

 

USA CJD TSE PRION UNIT, TEXAS, SURVEILLANCE UPDATE NOVEMBER 2014

 

National Prion Disease Pathology Surveillance Center Cases Examined1 (October 7, 2014)

 

***6 Includes 11 cases in which the diagnosis is pending, and 19 inconclusive cases;

 

***7 Includes 12 (11 from 2014) cases with type determination pending in which the diagnosis of vCJD has been excluded.

 

***The sporadic cases include 2660 cases of sporadic Creutzfeldt-Jakob disease (sCJD),

 

***50 cases of Variably Protease-Sensitive Prionopathy (VPSPr)

 

***and 21 cases of sporadic Fatal Insomnia (sFI).

 


 

Thursday, January 15, 2015

 

41-year-old Navy Commander with sporadic Creutzfeldt–Jakob disease CJD TSE Prion: Case Report

 


 

Subject: *** Becky Lockhart 46, Utah’s first female House speaker, dies diagnosed with the extremely rare Creutzfeldt-Jakob disease aka mad cow type disease

 

what is CJD ? just ask USDA inc., and the OIE, they are still feeding the public and the media industry fed junk science that is 30 years old.

 

why doesn’t some of you try reading the facts, instead of rubber stamping everything the USDA inc says.

 

sporadic CJD has now been linked to BSE aka mad cow disease, Scrapie, and there is much concern now for CWD and risk factor for humans.

 

My sincere condolences to the family and friends of the House Speaker Becky Lockhart. I am deeply saddened hear this.

 

with that said, with great respect, I must ask each and every one of you Politicians that are so deeply saddened to hear of this needless death of the Honorable House Speaker Becky Lockhart, really, cry me a friggen river. I am seriously going to ask you all this...I have been diplomatic for about 17 years and it has got no where. people are still dying. so, are you all stupid or what??? how many more need to die ??? how much is global trade of beef and other meat products that are not tested for the TSE prion disease, how much and how many bodies is this market worth?

 

Saturday, January 17, 2015

 

*** Becky Lockhart 46, Utah’s first female House speaker, dies diagnosed with the extremely rare Creutzfeldt-Jakob disease

 


 

*** ALERT new variant Creutzfeldt Jakob Disease nvCJD or vCJD, sporadic CJD strains, TSE prion aka Mad Cow Disease United States of America Update December 14, 2014 Report ***

 


 

 *** Creutzfeldt-Jakob Disease Public Health Crisis VIDEO

 


 


 


 


 

 PLEASE REMEMBER ;

 

The Akron, Ohio-based CJD Foundation said the Center for Disease Control revised that number in October of 2004 to about one in 9,000 CJD cases per year in the population group age 55 and older.

 

HAVE YOU GOT YOUR CJD QUESTIONNAIRE ASKING REAL QUESTIONS PERTAINING TO ROUTE AND SOURCE OF THE TSE AGENT THAT KILLED YOUR LOVED ONE ???

 

if not, why not...

 

Friday, November 30, 2007

 

CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION

 


 


 

 Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease

 

Received July 24, 2014; Accepted September 16, 2014; Published November 3, 2014

 


 

Singeltary comment ;

 


 

 Saturday, December 13, 2014

 

Terry S. Singeltary Sr. Publications TSE prion disease

 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

 

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

 

snip...

 


 

 

 

Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

Wednesday, March 18, 2015

Changes in Retinal Function and Morphology Are Early Clinical Signs of Disease in Cattle with Bovine Spongiform Encephalopathy

Research Article

 

Changes in Retinal Function and Morphology Are Early Clinical Signs of Disease in Cattle with Bovine Spongiform Encephalopathy

 

M. Heather West Greenlee ,

 

Jodi D. Smith,

 

Ekundayo M. Platt,

 

 Jessica R. Juarez,

 

 Leo L. Timms,

 

 Justin J. Greenlee

 

PLOS

 

Published: March 10, 2015 •DOI: 10.1371/journal.pone.0119431

 

Abstract

 

Bovine spongiform encephalopathy (BSE) belongs to a group of fatal, transmissible protein misfolding diseases known as transmissible spongiform encephalopathies (TSEs). All TSEs are caused by accumulation of misfolded prion protein (PrPSc) throughout the central nervous system (CNS), which results in neuronal loss and ultimately death. Like other protein misfolding diseases including Parkinson’s disease and Alzheimer’s disease, TSEs are generally not diagnosed until the onset of disease after the appearance of unequivocal clinical signs. As such, identification of the earliest clinical signs of disease may facilitate diagnosis. The retina is the most accessible part of the central nervous system, and retinal pathology in TSE affected animals has been previously reported. Here we describe antemortem changes in retinal function and morphology that are detectable in BSE inoculated animals several months (up to 11 months) prior to the appearance of any other signs of clinical disease. We also demonstrate that differences in the severity of these clinical signs reflect the amount of PrPSc accumulation in the retina and the resulting inflammatory response of the tissue. These results are the earliest reported clinical signs associated with TSE infection and provide a basis for understanding the pathology and evaluating therapeutic interventions.

 

snip...

 

Discussion

 

snip...

 

Though there were only subtle histopathologic differences between retinas from cattle inoculated with classical BSE and BSE-H, immunohistochemical analysis did demonstrate differences in accumulation of PrPSc and activation of Müller glia and microglia, with BSE-H having markedly more PrPSc accumulation, Müller glia and microglia activation. Interestingly, these pathologic features correlate with the more robust phenotype of the electroretinograms in clinically ill BSE-H cattle. That is, when comparing clinical values from BSE-H to classical BSE inoculated animals, b-wave implicit times are longer and their amplitudes are markedly smaller. The b-wave amplitude can be used as an indirect measure of photoreceptor function, as death of photoreceptors results in a decrease in the b-wave amplitude. Though cattle inoculated with BSE-H did have a decreased b-wave amplitude and animals inoculated with classical BSE did not, we did not observe any major differences in the photoreceptor layer between these two groups. This may be due to changes in photoreceptor number in BSE-H cattle below our level of detection, or instead impairment of synaptic communication between photoreceptors and their post-synaptic cells (the bipolar cells). The b-wave implicit time (time for peak to reach maximum amplitude) is generated by retinal bipolar cells and Müller glia [39]. Of these two cell types, we observed changes in only the Müller glia. Both the decrease in b-wave amplitude and the increase in b-wave implicit time can be explained by synaptic dysfunction in the outer plexiform layer, the synaptic interface between photoreceptors and bipolar cells. This would be consistent with accumulation of PrPSc causing synaptic dysfunction (reviewed in [46]), and correlates with the differences in PrPSc accumulation between classical BSE and BSE-H.

 

The more robust retinal histologic changes in BSE-H inoculated cattle also correlates with a shorter incubation time in these animals. It has been shown previously that PrPSc from BSE-H has a higher stability when compared to classical BSE [47]. Our observation that the higher stability BSE-H has a shorter incubation time, and accumulates in the soma of retinal ganglion cells is consistent with similar observations by Ayers et al, who reported shorter incubation times and intraneuronal accumulation of PrPSc in higher stability prion strains [48]. In addition, we observed more a robust activation of retinal Müller glia and microglia in retinas from animals inoculated with BSE-H. Experiments to study the relationship between PrPSc stability, incubation time and glial activation are ongoing.

 

As an extension of the central nervous system, the retina may have diagnostic potential for several protein misfolding neurodegenerative disorders. Recent studies demonstrate that both retinal function and morphology in patients with Parkinson’s disease are significant predictors of disease severity and quality of life [49–53]. Changes in the retinal nerve fiber layer measured by OCT have been reported in patients with Alzheimer’s Disease [54], and measurements of the choroid (the vascular rich layer of the eye deep to the retina) have shown significant choroidal thinning in AD patients as well [55].

 

Here we demonstrate that the retina is an important tool to study the pathogenesis of prion disease. The retina is an isolated structure, and thus accumulation of PrPSc can be precisely quantified, as compared to the rest of the brain where quantification of regional accumulation is affected by dissection. Further, different functional assessment approaches can test different cell populations. The assessments used in this work test photoreceptors, bipolar cells and Müller glia, and our results demonstrate that our functional assessment was sensitive enough to differentiate between classical BSE and BSE-H, which at terminal stages have differences in PrPSc accumulation, Müller glia and microglia activation However, the results presented here are from animals inoculated with BSE intracranially. Ongoing studies will determine if similar changes can be detected in animals inoculated by the oronasal route.

 

The suitability of retinal assessment for diagnosis of prion disease in animals or humans remains an open question. Unequivocal diagnosis of prion disease depends upon the detection of misfolded prion protein (PrPSc). Several promising diagnostics for Creutzfeldt-Jakob Disease (CJD; the most common human prion disease) include amplification of PrPSc from nasal brushings [16], blood [15] and urine [14]. Detection of PrPSc associated with nasal brushings appears to be highly sensitive and specific and can detect both sporadic CJD as well has genetic CJD [16]. Experimentally, PrPSc can be detected prior to clinical illness in blood from macaques infected with BSE (the agent of variant CJD), and in blood samples from a small number of human CJD patients. PrPSc was detectable in patients with variant CJD and not sporadic CJD [15], raising the possibility that PrPSc in blood may be specific to vCJD. In a separate study of human vCJD patients, PrPSc was detected in the urine from 13/14 individuals [14,15]. The latter two studies demonstrate the utility of bodily fluids for detection of vCJD in clinical and potentially pre-clinical individuals. Though the retinal changes that we describe precede the clinical phase of illness in cattle, it is not yet known how this may relate clinical disease in humans. However, our results, taken with retinal imaging studies of individuals with Parkinson’s and Alzheimer’s disease, suggest that retinal imaging of CJD patients may prove useful.

 

The preponderance of evidence demonstrates that the retina is affected by protein misfolding disorders long thought to be confined to the brain. Thus, the retina holds tremendous potential for the study of disease pathogenesis, and evaluation of potential therapeutic interventions for multiple protein misfolding disorders. Transmissible spongiform encephalopathies are an infectious and highly predictable model of protein misfolding neurodegenerative disease. Predictable incubation times and PrPSc accumulation paired with detectable preclinical morphologic and functional deficits make the retina an excellent model for future studies to understand the detailed relationship between accumulation of misfolded protein and specific changes in neural function.

 

Supporting Information

 

snip...please see full text ;

 


 

again, many thanks to PLoS et al, and all Scientist for the OPEN ACCESS for scientific research. ...terry

 

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;

 


 

LET'S take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow. This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$ ALABAMA MAD COW g-h-BSEalabama In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.

 


 


 

Saturday, August 14, 2010

 

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY (see mad cow feed in COMMERCE IN ALABAMA...TSS)

 


 

her healthy calf also carried the mutation

 

(J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008).

 

This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine-human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks.

 

Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA NATURE|Vol 457|26 February 2009

 


 

BANNED MAD COW FEED IN COMMERCE IN ALABAMA

 

______________________________

 

PRODUCT

 

a) EVSRC Custom dairy feed, Recall # V-130-6;

 

b) Performance Chick Starter, Recall # V-131-6;

 

c) Performance Quail Grower, Recall # V-132-6;

 

d) Performance Pheasant Finisher, Recall # V-133-6.

 

CODE

 

None

 

RECALLING FIRM/MANUFACTURER

 

Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.

 

REASON

 

Dairy and poultry feeds were possibly contaminated with ruminant based protein.

 

VOLUME OF PRODUCT IN COMMERCE

 

477.72 tons

 

DISTRIBUTION

 

AL

 

______________________________

 

PRODUCT

 

a) Dairy feed, custom, Recall # V-134-6;

 

b) Custom Dairy Feed with Monensin, Recall # V-135-6.

 

CODE

 

None. Bulk product

 

RECALLING FIRM/MANUFACTURER

 

Recalling Firm: Burkmann Feed, Greeneville, TN, by Telephone beginning on June 28, 2006.

 

Manufacturer: H. J. Baker & Bro., Inc., Albertville, AL. Firm initiated recall is complete.

 

REASON

 

Possible contamination of dairy feeds with ruminant derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE

 

1,484 tons

 

DISTRIBUTION

 

TN and WV

 

END OF ENFORCEMENT REPORT FOR SEPTEMBER 6, 2006

 

###

 


 

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE - CLASS II

 

______________________________

 

PRODUCT

 

Bulk custom made dairy feed, Recall # V-115-6

 

CODE

 

None

 

RECALLING FIRM/MANUFACTURER

 

Hiseville Feed & Seed Co., Hiseville, KY, by telephone and letter on or about July 14, 2006. FDA initiated recall is ongoing.

 

REASON

 

Custom made feeds contain ingredient called Pro-Lak which may contain ruminant derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE

 

Approximately 2,223 tons

 

DISTRIBUTION

 

KY

 

______________________________

 

PRODUCT

 

Bulk custom made dairy feed, Recall # V-116-6

 

CODE

 

None

 

RECALLING FIRM/MANUFACTURER

 

Rips Farm Center, Tollesboro, KY, by telephone and letter on July 14, 2006. FDA initiated recall is ongoing.

 

REASON

 

Custom made feeds contain ingredient called Pro-Lak which may contain ruminant derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE

 

1,220 tons

 

DISTRIBUTION

 

KY

 

______________________________

 

PRODUCT

 

Bulk custom made dairy feed, Recall # V-117-6

 

CODE

 

None

 

RECALLING FIRM/MANUFACTURER

 

Kentwood Co-op, Kentwood, LA, by telephone on June 27, 2006. FDA initiated recall is completed.

 

REASON

 

Possible contamination of animal feed ingredients, including ingredients that are used in feed for dairy animals, with ruminant derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE

 

40 tons

 

DISTRIBUTION

 

LA and MS

 

______________________________

 

PRODUCT

 

Bulk Dairy Feed, Recall V-118-6

 

CODE

 

None

 

RECALLING FIRM/MANUFACTURER

 

Cal Maine Foods, Inc., Edwards, MS, by telephone on June 26, 2006. FDA initiated recall is complete.

 

REASON

 

Possible contamination of animal feed ingredients, including ingredients that are used in feed for dairy animals, with ruminant derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE

 

7,150 tons

 

DISTRIBUTION

 

MS

 

______________________________

 

PRODUCT

 

Bulk custom dairy pre-mixes, Recall # V-119-6

 

CODE

 

None

 

RECALLING FIRM/MANUFACTURER

 

Walthall County Co-op, Tylertown, MS, by telephone on June 26, 2006. Firm initiated recall is complete.

 

REASON

 

Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE

 

87 tons

 

DISTRIBUTION

 

MS

 

______________________________

 

PRODUCT

 

Bulk custom dairy pre-mixes, Recall # V-120-6

 

CODE

 

None

 

RECALLING FIRM/MANUFACTURER

 

Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete.

 

REASON

 

Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE

 

350 tons

 

DISTRIBUTION

 

AL and MS

 

______________________________

 

PRODUCT

 

a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet,

 

50 lb. bags, Recall # V-121-6;

 

b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet,

 

50 lb. bags, Recall # V-122-6;

 

c) Tucker Milling, LLC #31232 Game Bird Grower,

 

50 lb. bags, Recall # V-123-6;

 

d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;

 

e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;

 

f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;

 

g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6

 

CODE

 

All products manufactured from 02/01/2005 until 06/20/2006

 

RECALLING FIRM/MANUFACTURER

 

Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006.

 

Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.

 

REASON

 

Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".

 

VOLUME OF PRODUCT IN COMMERCE

 

7,541-50 lb bags

 

DISTRIBUTION

 

AL, GA, MS, and TN

 

END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006

 

###

 


 

Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006

 

Date: August 6, 2006 at 6:16 pm PST PRODUCT

 

a) CO-OP 32% Sinking Catfish, Recall # V-100-6;

 

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;

 

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;

 

d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;

 

*** e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;

 

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;

 

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;

 

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;

 

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;

 

j) CO-OP LAYING CRUMBLES, Recall # V-109-6;

 

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;

 

l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;

 

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE

 

Product manufactured from 02/01/2005 until 06/06/2006

 

RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.

 

REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".

 

VOLUME OF PRODUCT IN COMMERCE 125 tons

 

DISTRIBUTION AL and FL

 

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

 

###

 


 

MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67

 

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II

 

______________________________

 

PRODUCT

 

a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;

 

b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;

 

c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6;

 

d) Feather Meal, Recall # V-082-6 CODE

 

a) Bulk

 

b) None

 

c) Bulk

 

d) Bulk

 

RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.

 

REASON

 

Possible contamination of animal feeds with ruminent derived meat and bone meal.

 

VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons

 

DISTRIBUTION Nationwide

 

END OF ENFORCEMENT REPORT FOR July 12, 2006

 

###

 


 

what about that ALABAMA MAD COW, AND MAD COW FEED THERE FROM IN THAT STATE ???

 

Saturday, August 14, 2010

 

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

 

*** (see mad cow feed in COMMERCE IN ALABAMA...TSS)

 

BANNED MAD COW FEED IN COMMERCE IN ALABAMA

 

Date: September 6, 2006 at 7:58 am PST PRODUCT

 

a) EVSRC Custom dairy feed, Recall # V-130-6;

 

b) Performance Chick Starter, Recall # V-131-6;

 

c) Performance Quail Grower, Recall # V-132-6;

 

d) Performance Pheasant Finisher, Recall # V-133-6.

 

CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.

 

REASON

 

Dairy and poultry feeds were possibly contaminated with ruminant based protein.

 

VOLUME OF PRODUCT IN COMMERCE 477.72 tons

 

DISTRIBUTION AL

 

______________________________

 


 

 

10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

 

Date: March 21, 2007 at 2:27 pm PST

 

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II

 

PRODUCT

 

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007

 

CODE

 

Cattle feed delivered between 01/12/2007 and 01/26/2007

 

RECALLING FIRM/MANUFACTURER

 

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

 

Firm initiated recall is ongoing.

 

REASON

 

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

 

VOLUME OF PRODUCT IN COMMERCE

 

42,090 lbs.

 

DISTRIBUTION

 

WI

 

___________________________________

 

PRODUCT

 

Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

 

CODE

 

The firm does not utilize a code - only shipping documentation with commodity and weights identified.

 

RECALLING FIRM/MANUFACTURER

 

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

 

REASON

 

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

 

VOLUME OF PRODUCT IN COMMERCE

 

9,997,976 lbs.

 

DISTRIBUTION

 

ID and NV

 

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

 


 

2013

 

Sunday, December 15, 2013

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE

 


 

Tuesday, December 23, 2014

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION

 


 

Tuesday, February 17, 2015

 

Could we spot the next BSE?, asks BVA President

 


 


 

PLOS Singeltary Comment ;

 

*** ruminant feed ban for cervids in the United States ? ***

 

31 Jan 2015 at 20:14 GMT

 


 

Saturday, January 24, 2015

 

Bovine Spongiform Encephalopathy: Atypical Pros and Cons

 


 

Saturday, January 31, 2015

 

RAPID ADVICE 17-2014 : Evaluation of the risk for public health of casings in countries with a “negligible risk status for BSE” and on the risk of modification of the list of specified risk materials (SRM) with regard to BSE

 


 

Conclusion/Significance: Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.

 


 


 


 


 

SPONTANEOUS TSE

 

Perspectives BIOMEDICINE: A Fresh Look at BSE Bruce Chesebro*

 

Mad cow disease, or bovine spongiform encephalopathy (BSE), is the cattle form of a family of progressive brain diseases. These diseases include scrapie in sheep, Creutzfeldt-Jakob disease (CJD) in humans, and chronic wasting disease (CWD) in deer and elk. They are also known as either "prion diseases" because of the association of a misfolded cellular prion protein in pathogenesis or "transmissible spongiform encephalopathies" (TSEs) because of the spongelike nature of the damaged brain tissue (1).

 

The recent discovery of two BSE-infected cows, one in Canada and one in the United States, has dramatically increased concern in North America among meat producers and consumers alike over the extent to which BSE poses a threat to humans as well as to domestic and wild animals. The European BSE epidemic of the late-1980s seems to have been initiated a decade earlier in the United Kingdom by changes in the production of meat and bone meal (MBM) from rendered livestock, which led to contamination of MBM with the BSE infectious agent. Furthermore, the fact that UK farmers fed this rendered MBM to younger animals and that this MBM was distributed to many countries may have contributed to the ensuing BSE epidemic in the United Kingdom and internationally (2).

 

Despite extensive knowledge about the spread of BSE through contaminated MBM, the source of BSE in Europe remains an unsolved mystery (2). It has been proposed that BSE could be derived from a cross-species infection, perhaps through contamination of MBM by scrapie-infected sheep tissues (see the figure). Alternatively, BSE may have been an endemic disease in cattle that went unnoticed because of its low level of horizontal transmission. Lastly, BSE might have originated by "spontaneous" misfolding of the normal cellular prion protein into the disease-associated abnormal isoform (3), which is postulated to be the infectious agent or "prion."

 

Five possible sources of BSE in North American cattle. Sheep, deer, and elk could spread prion diseases (TSEs) to cattle through direct animal contact or contamination of pastures. Endemic BSE has not been proven to exist anywhere in the world, but it is difficult to exclude this possibility because of the inefficient spread of BSE infectivity between individual animals (2). BSE caused by spontaneous misfolding of the prion protein has not been proven. CREDIT: KATHARINE SUTLIFF/SCIENCE

 

snip...

 

Nevertheless, the idea that BSE might originate due to the spontaneous misfolding of prion proteins has received renewed interest in the wake of reports suggesting the occurrence of atypical BSE (9-11). These results imply that new strains of cattle BSE might have originated separately from the main UK outbreak. Where and how might such strains have originated? Although such rare events cannot be studied directly, any number of sources of the original BSE strain could also explain the discovery of additional BSE strains in cattle (see the figure). However, it would be worrisome if spontaneous BSE were really a valid etiology because such a mechanism would be impossible to prevent--unlike other possible scenarios that could be controlled by large-scale eradication of TSE-positive animals.

 

Another way to look at this problem is to examine evidence for possible spontaneous TSE disease in other animals besides cattle. Spontaneous BSE would be extremely difficult to detect in cattle, where horizontal spread is minimal. However, in the case of the sheep TSE disease, scrapie, which spreads from ewes to lambs at birth as well as between adults, spontaneous disease should be detectable as new foci of clinical infection. In the early 1950s scrapie was eradicated in both Australia and New Zealand, and the mainland of both these countries has remained scrapie-free ever since. This scrapie-free status is not the result of selection of sheep resistant to scrapie because sheep from New Zealand are as susceptible as their UK counterparts to experimental scrapie infection (12). These experiments of man and nature appear to indicate that spontaneous clinical scrapie does not occur in sheep. Similarly, because CWD is known to spread horizontally, the lack of CWD in the deer or elk of eastern North America but its presence in western regions would also argue against a spontaneous disease mechanism. This is particularly noteworthy in New Zealand, where there are large numbers of deer and elk farms and yet no evidence of spontaneous CWD. If spontaneous scrapie does not occur in sheep or deer, this would suggest that spontaneous forms of BSE and sporadic Creutzfeldt-Jakob disease (sCJD) are unlikely to be found in cattle or humans. The main caveat to this notion is that spontaneous disease may arise in some animal species but not others. In humans, sCJD--which is considered by some researchers to begin by spontaneous misfolding of the prion protein--usually takes more than 50 years to appear. Thus, in animals with a shorter life-span, such as sheep, deer, and cattle, an analogous disease mechanism might not have time to develop.

 

What can we conclude so far about BSE in North America? Is the BSE detected in two North American cows sporadic or spontaneous or both? "Sporadic" pertains to the rarity of disease occurrence. "Spontaneous" pertains to a possible mechanism of origin of the disease. These are not equivalent terms. The rarity of BSE in North America qualifies it as a sporadic disease, but this low incidence does not provide information about cause. For the two reported North American BSE cases, exposure to contaminated MBM remains the most likely culprit. However, other mechanisms are still possible, including cross-infection by sheep with scrapie or cervids with CWD, horizontal transmission from cattle with endemic BSE, and spontaneous disease in individual cattle. Based on our understanding of other TSEs, the spontaneous mechanism is probably the least likely. Thus, "idiopathic" BSE--that is, BSE of unknown etiology--might be a better term to describe the origin of this malady. ...

 

snip...full text ;

 


 

 

DR. DEHAVEN: “All right. I think we've got three different questions in there, and I'll try to touch on each one of them.

 

“First of all, let me correct just a technical issue, and that is you mentioned 1 in 10,000. And actually our surveillance system currently is designed, the one that we have in place now is designed to detect 1 positive in 1 million cattle, and I gave some numbers between 200,000 and 268,000 that would allow us to detect 1 in 10 million as opposed to 1 in 10,000.

 

“So we would, if we were able to collect in the ballpark of those numbers of samples then we with increasing numbers of samples have an increasingly statistically valid sample from which to determine, one, whether or not the disease exists and, if so, at what prevalence level.

 

“So our real emphasis is to test as many of those animals as we can, ensure that we get an appropriate geographical distribution, but not setting a specific number as far as a target. Again, consistent with the recommendation from the International Review Team, their recommendation was to test all of them.

 

“So that's consistent with where we're going is to test as many as we possibly can.

 

*** “As far as spontaneous cases, that is a very difficult issue. There is no evidence to prove that spontaneous BSE occurs in cattle; but here again it's an issue of proving a negative. We do know that CJD, the human version of the disease, does occur spontaneously in humans at the rate of about 1 in 1 million. We don't have enough data to definitively say that spontaneous cases of BSE in cattle occur or do not occur.

 

“Again, it's a very difficult situation to prove a negative.

 

“So a lot of research is ongoing. Certainly if we do come up with any positive samples in the course of this surveillance we will be looking at that question in evaluating those samples but no scientifically hard evidence to confirm or refute whether or not spontaneous cases of BSE occur.

 

snip...

 


 


 

1. The BSE epidemic

 

1.1. The origin of the BSE epidemic will probably never be determined with certainty.

 

1.2. We do not know whether or not some of the BARB cases represent truly sporadic classical BSE. If there are spontaneous cases then BSE will never be eradicated although reducing surveillance could make it appear that BSE has been eradicated.

 

snip...

 

5.3. It was stated that the number of sporadic CJD cases was rising. Participants were invited to discuss the reason for this. It was suggested that this was likely to be due to improved surveillance with more cases of sporadic CJD being detected (i.e. through MRI scans). There had been a similar increase in sporadic CJD in countries which did not have a BSE epidemic but improved their surveillance. This supported this theory and suggested that the increase in sporadic CJD was not related to the BSE outbreak.

 


 

Atypical BSE: Transmissibility

 

Linda Detwiller, 5/10/2011

 

 BASE (L) transmitted to:  cattle (IC) - inc < 20 mos and oral?)

 

 Cynomolgus macaques (IC)

 

 Mouse lemurs (IC and oral)

 

 wild-type mice (IC)

 

 bovinized transgenic mice (IC and IP)

 

 humanized transgenic mice (IC)

 

 H cases transmitted to:

 

 cattle – IC incubations < 20 months

 

 bovinized transgenic mice (IC)

 

 ovinized transgenic mice (IC)

 

 C57BL mice (IC)

 

 One study did not transmit to humanized PrP Met 129 mice

 

Evaluation of Possibility of Atypical

 

BSE Transmitting to Humans

 

 Possble interpretation:

 

 L type seems to transmit to nonhuman primates with greater ease than classical BSE

 

 L type also transmitted to humanized transgenic mice with higher attack rate and shorter incubation period than classical?

 

 H type did not transmit to Tg Hu transgenic mice

 

Linda Detwiller, 5/10/2011

 


 

I ask Professor Kong ;

 

Thursday, December 04, 2008 3:37 PM

 

Subject: RE: re--Chronic Wating Disease (CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk Assessment

 

IS the h-BSE more virulent than typical BSE as well, or the same as cBSE, or less virulent than cBSE? just curious.....

 

Professor Kong reply ;

 

.....snip

 

As to the H-BSE, we do not have sufficient data to say one way or another, but we have found that H-BSE can infect humans. I hope we could publish these data once the study is complete. Thanks for your interest.

 

Best regards, Qingzhong Kong, PhD Associate Professor Department of Pathology Case Western Reserve University Cleveland, OH 44106 USA

 

BSE-H is also transmissible in our humanized Tg mice. The possibility of more than two atypical BSE strains will be discussed.

 

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.

 


 


 

P.4.23 Transmission of atypical BSE in humanized mouse models

 

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

 

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were argely undefined.

 

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice.

 

Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

 

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time. The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

 

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg mice. The possibility of more than two atypical BSE strains will be discussed.

 

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.

 


 


 


 

14th International Congress on Infectious Diseases H-type and L-type Atypical BSE January 2010 (special pre-congress edition)

 

18.173 page 189

 

Experimental Challenge of Cattle with H-type and L-type Atypical BSE

 

A. Buschmann1, U. Ziegler1, M. Keller1, R. Rogers2, B. Hills3, M.H. Groschup1. 1Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany, 2Health Canada, Bureau of Microbial Hazards, Health Products & Food Branch, Ottawa, Canada, 3Health Canada, Transmissible Spongiform Encephalopathy Secretariat, Ottawa, Canada

 

Background: After the detection of two novel BSE forms designated H-type and L-type atypical BSE the question of the pathogenesis and the agent distribution of these two types in cattle was fully open. From initial studies of the brain pathology, it was already known that the anatomical distribution of L-type BSE differs from that of the classical type where the obex region in the brainstem always displays the highest PrPSc concentrations. In contrast in L-type BSE cases, the thalamus and frontal cortex regions showed the highest levels of the pathological prion protein, while the obex region was only weakly involved.

 

Methods:We performed intracranial inoculations of cattle (five and six per group) using 10%brainstemhomogenates of the two German H- and L-type atypical BSE isolates. The animals were inoculated under narcosis and then kept in a free-ranging stable under appropriate biosafety conditions. At least one animal per group was killed and sectioned in the preclinical stage and the remaining animals were kept until they developed clinical symptoms. The animals were examined for behavioural changes every four weeks throughout the experiment following a protocol that had been established during earlier BSE pathogenesis studies with classical BSE.

 

Results and Discussion: All animals of both groups developed clinical symptoms and had to be euthanized within 16 months. The clinical picture differed from that of classical BSE, as the earliest signs of illness were loss of body weight and depression. However, the animals later developed hind limb ataxia and hyperesthesia predominantly and the head. Analysis of brain samples from these animals confirmed the BSE infection and the atypical Western blot profile was maintained in all animals. Samples from these animals are now being examined in order to be able to describe the pathoge esis and agent distribution for these novel BSE types.

 

Conclusions: A pilot study using a commercially avaialble BSE rapid test ELISA revealed an essential restriction of PrPSc to the central nervous system for both atypical BSE forms. A much more detailed analysis for PrPSc and infectivity is still ongoing.

 


 

14th ICID International Scientific Exchange Brochure - Final Abstract Number: ISE.114

 

Session: International Scientific Exchange

 

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

 

T. Singeltary Bacliff, TX, USA

 

Background: An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.

 

Methods: 12 years independent research of available data

 

Results: I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.

 

Conclusion: I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

 


 

snip... see more breaches in the BSE aka mad cow Triple Firewall, that never was here ;

 

Friday, January 23, 2015

 

*** Replacement of soybean meal in compound feed by European protein sources and relaxing the mad cow ban $

 


 

Comment from Terry Singeltary Sr. This is a Comment on the Animal and Plant Health Inspection Service (APHIS) Notice: Agency Information Collection Activities; Proposals, Submissions, and Approvals: Bovine Spongiform Encephalopathy; Importation of Animals and Animal Products

 

For related information, Open Docket Folder Docket folder icon

 

--------------------------------------------------------------------------------

 

Show agency attachment(s) AttachmentsView All (0) Empty

 

--------------------------------------------------------------------------------

 

Comment View document:Docket No. APHIS-2014-0107 Bovine Spongiform Encephalopathy; Importation of Animals and Animal Products Singeltary Submission ;

 

I believe that there is more risk to the world from Transmissible Spongiform Encephalopathy TSE prion aka mad cow type disease now, coming from the United States and all of North America, than there is risk coming to the USA and North America, from other Countries. I am NOT saying I dont think there is any risk for the BSE type TSE prion coming from other Countries, I am just saying that in 2015, why is the APHIS/USDA/FSIS/FDA still ignoring these present mad cow risk factors in North America like they are not here?

 

North America has more strains of TSE prion disease, in more species (excluding zoo animals in the early BSE days, and excluding the Feline TSE and or Canine TSE, because they dont look, and yes, there has been documented evidence and scientific studies, and DEFRA Hound study, that shows the canine spongiform encephalopathy is very possible, if it has not already happened, just not documented), then any other Country in the world. Mink TME, Deer Elk cervid CWD (multiple strains), cBSE cattle, atypical L-type BSE cattle, atypical H-type BSE cattle, atyical HG type BSE cow (the only cow documented in the world to date with this strain), typical sheep goat Scrapie (multiple strains), and the atypical Nor-98 Scrapie, which has been linked to sporadic CJD, Nor-98 atypical Scrapie has spread from coast to coast. sporadic CJD on the rise, with different strains mounting, victims becoming younger, with the latest nvCJD human mad cow case being documented in Texas again, this case, NOT LINKED TO EUROPEAN TRAVEL CDC.

 

typical BSE can propagate as nvCJD and or sporadic CJD (Collinge et al), and sporadic CJD has now been linked to atypical BSE, Scrapie and atypical Scrapie, and scientist are very concerned with CWD TSE prion in the Cervid populations. in my opinion, the BSE MRR policy, which overtook the BSE GBR risk assessments for each country, and then made BSE confirmed countries legal to trade mad cow disease, which was all brought forth AFTER that fateful day December 23, 2003, when the USA lost its gold card i.e. BSE FREE status, thats the day it all started. once the BSE MRR policy was shoved down every countries throat by USDA inc and the OIE, then the legal trading of Scrapie was validated to be a legal trading commodity, also shoved through by the USDA inc and the OIE, the world then lost 30 years of attempted eradication of the BSE TSE prion disease typical and atypical strains, and the BSE TSE Prion aka mad cow type disease was thus made a legal trading commodity, like it or not. its all about money now folks, trade, to hell with human health with a slow incubating disease, that is 100% fatal once clinical, and forget the fact of exposure, sub-clinical infection, and friendly fire there from i.e. iatrogenic TSE prion disease, the pass it forward mode of the TSE PRION aka mad cow type disease. its all going to be sporadic CJD or sporadic ffi, or sporadic gss, or now the infamous VPSPr. ...problem solved $$$

 

the USDA/APHIS/FSIS/FDA triple mad cow BSE firewall, well, that was nothing but ink on paper.

 

for this very reason I believe the BSE MRR policy is a total failure, and that this policy should be immediately withdrawn, and set back in place the BSE GBR Risk Assessments, with the BSE GBR risk assessments set up to monitor all TSE PRION disease in all species of animals, and that the BSE GBR risk assessments be made stronger than before.

 

lets start with the recent notice that beef from Ireland will be coming to America.

 

Ireland confirmed around 1655 cases of mad cow disease. with the highest year confirming about 333 cases in 2002, with numbers of BSE confirmed cases dropping from that point on, to a documentation of 1 confirmed case in 2013, to date. a drastic decrease in the feeding of cows to cows i.e. the ruminant mad cow feed ban, and the enforcement of that ban, has drastically reduced the number of BSE cases in Europe, minus a few BABs or BARBs. a far cry from the USDA FDA triple BSE firewall, which was nothing more than ink on paper, where in 2007, in one week recall alone, some 10 MILLION POUNDS OF BANNED POTENTIAL MAD COW FEED WENT OUT INTO COMMERCE IN THE USA. this is 10 years post feed ban. in my honest opinion, due to the blatant cover up of BSE TSE prion aka mad cow disease in the USA, we still have no clue as to the true number of cases of BSE mad cow disease in the USA or North America as a whole. ...just saying.

 

Number of reported cases of bovine spongiform encephalopathy (BSE) in farmed cattle worldwide* (excluding the United Kingdom)

 

Country/Year

 

snip...please see attached pdf file, with references of breaches in the USA triple BSE mad cow firewalls, and recent science on the TSE prion disease. ...TSS No documents available. AttachmentsView All (1) Empty Docket No. APHIS-2014-0107 Bovine Spongiform Encephalopathy; Importation of Animals and Animal Products Singeltary Submission View Attachment:

 


 

Sunday, January 11, 2015

 

Docket No. APHIS-2014-0107 Bovine Spongiform Encephalopathy; Importation of Animals and Animal Products Singeltary Submission

 


 


 

Friday, January 23, 2015

 

*** Replacement of soybean meal in compound feed by European protein sources and relaxing the mad cow ban $

 


 

Saturday, January 24, 2015

 

*** Bovine Spongiform Encephalopathy: Atypical Pros and Cons

 


 

Monday, December 1, 2014

 

Germany Bovine Spongiform Encephalopathy BSE CJD TSE Prion disease A Review December 1, 2014

 


 

Thursday, January 29, 2015

 

Identification of H-type BSE in Portugal

 


 

Thursday, January 29, 2015

 

OIE REPORT Bovine spongiform encephalopathy Prion (atypical BSE type H), Norway Information received on 29/01/2015

 


 

Thursday, July 24, 2014

 

Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE SCIENTIFIC REPORT OF EFSA

 


 

Saturday, June 12, 2010

 

PUBLICATION REQUEST AND FOIA REQUEST Project Number: 3625-32000-086-05 Study of Atypical Bse

 


 

Sunday, December 28, 2014

 

Reverse Freedom of Information Act request rFOIA FSIS USDA APHIS TSE PRION aka BSE MAD COW TYPE DISEASE December 2014

 


 

 
Monday, February 23, 2015
 
20th BSE Case Raises New Concerns about Canada's Feeding Practices and Voluntary Testing Program; Highlights Importance of COOL
 

 

 

Saturday, February 28, 2015

 

BSE CANADA UPDATE Transcript - Technical Briefing to Provide an Update on Investigation of Bovine Spongiform Encephalopathy in Alberta February 27, 2015 4:00 p.m.

 


 

 

Friday, January 30, 2015

 

*** Scrapie: a particularly persistent pathogen ***

 


 

Tuesday, December 23, 2014

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION

 


 

Saturday, August 30, 2014

 

Maine Firm Recalls Ribeye and Carcass Products That May Contain Specified Risk Materials SRM TSE PRION aka mad cow type disease

 


 

Friday, December 19, 2014

 

Rancho Alleged Cancerous Eyeball Case Going To Trial

 


 

Thursday, November 28, 2013

 

Department of Justice Former Suppliers of Beef to National School Lunch Program Settle Allegations of Improper Practices and Mistreating Cows

 


 

seems USDA NSLP et al thought that it would be alright, to feed our children all across the USA, via the NSLP, DEAD STOCK DOWNER COWS, the most high risk cattle for mad cow type disease, and other dangerous pathogens, and they did this for 4 years, that was documented, then hid what they did by having a recall, one of the largest recalls ever, and they made this recall and masked the reason for the recall due to animal abuse (I do not condone animal abuse), not for the reason of the potential for these animals to have mad cow BSE type disease (or other dangerous and deadly pathogens). these TSE prion disease can lay dormant for 5, 10, 20 years, or longer, WHO WILL WATCH OUR CHILDREN FOR THE NEXT 5 DECADES FOR CJD ???

 

Saturday, September 21, 2013

 

Westland/Hallmark: 2008 Beef Recall A Case Study by The Food Industry Center January 2010 THE FLIM-FLAM REPORT

 


 

DID YOUR CHILD CONSUME SOME OF THESE DEAD STOCK DOWNER COWS, THE MOST HIGH RISK FOR MAD COW DISEASE ??? this recall was not for the welfare of the animals. ...tss you can check and see here ; (link now dead, does not work...tss)

 


 

try this link ;

 


 

Sunday, November 13, 2011

 

*** California BSE mad cow beef recall, QFC, CJD, and dead stock downer livestock

 


 

Monday, October 10, 2011

 

EFSA Journal 2011 The European Response to BSE: A Success Story

 

snip...

 

EFSA and the European Centre for Disease Prevention and Control (ECDC) recently delivered a scientific opinion on any possible epidemiological or molecular association between TSEs in animals and humans (EFSA Panel on Biological Hazards (BIOHAZ) and ECDC, 2011). This opinion confirmed Classical BSE prions as the only TSE agents demonstrated to be zoonotic so far

 

*** but the possibility that a small proportion of human cases so far classified as "sporadic" CJD are of zoonotic origin could not be excluded.

 

*** Moreover, transmission experiments to non-human primates suggest that some TSE agents in addition to Classical BSE prions in cattle (namely L-type Atypical BSE, Classical BSE in sheep, transmissible mink encephalopathy (TME) and chronic wasting disease (CWD) agents) might have zoonotic potential.

 

snip...

 


 


 

Thursday, August 12, 2010

 

Seven main threats for the future linked to prions

 

First threat

 

The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.

 

*** Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans.

 

*** These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.

 

Second threat

 

snip...

 


 

 2014

 

***Moreover, L-BSE has been transmitted more easily to transgenic mice overexpressing a human PrP [13,14] or to primates [15,16] than C-BSE.

 

***It has been suggested that some sporadic CJD subtypes in humans may result from an exposure to the L-BSE agent.

 

*** Lending support to this hypothesis, pathological and biochemical similarities have been observed between L-BSE and an sCJD subtype (MV genotype at codon 129 of PRNP) [17], and between L-BSE infected non-human primate and another sCJD subtype (MM genotype) [15].

 

snip...

 


 

 

 nvCJD CONFIRMED TEXAS USA 2014

 

‘’The completed investigation did not support the patient's having had extended travel to European countries, including the United Kingdom, or travel to Saudi Arabia. The specific overseas country where this patient’s infection occurred is less clear largely because the investigation did not definitely link him to a country where other known vCJD cases likely had been infected.’’

 

Confirmed Variant Creutzfeldt-Jakob Disease (variant CJD) Case in Texas

 

Updated: October 7, 2014

 

CDC and the Texas Department of State Health Services (DSHS) have completed the investigation of the recently reported fourth vCJD case in the United States. It confirmed that the case was in a US citizen born outside the Americas and indicated that the patient's exposure to the BSE/vCJD agent most likely occurred before he moved to the United States; the patient had resided in Kuwait, Russia and Lebanon. The completed investigation did not support the patient's having had extended travel to European countries, including the United Kingdom, or travel to Saudi Arabia. The specific overseas country where this patient’s infection occurred is less clear largely because the investigation did not definitely link him to a country where other known vCJD cases likely had been infected.

 


 

Sunday, November 23, 2014

 

Confirmed Variant Creutzfeldt-Jakob Disease (variant CJD) Case in Texas in June 2014 confirmed as USA case NOT European

 


 

Monday, November 3, 2014

 

USA CJD TSE PRION UNIT, TEXAS, SURVEILLANCE UPDATE NOVEMBER 2014

 

National Prion Disease Pathology Surveillance Center Cases Examined1 (October 7, 2014)

 

***6 Includes 11 cases in which the diagnosis is pending, and 19 inconclusive cases;

 

***7 Includes 12 (11 from 2014) cases with type determination pending in which the diagnosis of vCJD has been excluded.

 

***The sporadic cases include 2660 cases of sporadic Creutzfeldt-Jakob disease (sCJD),

 

***50 cases of Variably Protease-Sensitive Prionopathy (VPSPr)

 

***and 21 cases of sporadic Fatal Insomnia (sFI).

 


 

Thursday, January 15, 2015

 

41-year-old Navy Commander with sporadic Creutzfeldt–Jakob disease CJD TSE Prion: Case Report

 


 

Subject: *** Becky Lockhart 46, Utah’s first female House speaker, dies diagnosed with the extremely rare Creutzfeldt-Jakob disease aka mad cow type disease

 

what is CJD ? just ask USDA inc., and the OIE, they are still feeding the public and the media industry fed junk science that is 30 years old.

 

why doesn’t some of you try reading the facts, instead of rubber stamping everything the USDA inc says.

 

sporadic CJD has now been linked to BSE aka mad cow disease, Scrapie, and there is much concern now for CWD and risk factor for humans.

 

My sincere condolences to the family and friends of the House Speaker Becky Lockhart. I am deeply saddened hear this.

 

with that said, with great respect, I must ask each and every one of you Politicians that are so deeply saddened to hear of this needless death of the Honorable House Speaker Becky Lockhart, really, cry me a friggen river. I am seriously going to ask you all this...I have been diplomatic for about 17 years and it has got no where. people are still dying. so, are you all stupid or what??? how many more need to die ??? how much is global trade of beef and other meat products that are not tested for the TSE prion disease, how much and how many bodies is this market worth?

 

Saturday, January 17, 2015

 

*** Becky Lockhart 46, Utah’s first female House speaker, dies diagnosed with the extremely rare Creutzfeldt-Jakob disease

 


 

*** ALERT new variant Creutzfeldt Jakob Disease nvCJD or vCJD, sporadic CJD strains, TSE prion aka Mad Cow Disease United States of America Update December 14, 2014 Report ***

 


 

Tuesday, November 04, 2014

 

Towards an Age-Dependent Transmission Model of Acquired and Sporadic Creutzfeldt-Jakob Disease

 


 

Thursday, January 22, 2015

 

Transmission properties of atypical Creutzfeldt-Jakob disease: a clue to disease etiology?

 


 


 

Sunday, July 06, 2014

 

Dietary Risk Factors for Sporadic Creutzfeldt-Jakob Disease: A Confirmatory Case-Control Study

 

Conclusions—The a priori hypotheses were supported.

 

*Consumption of various meat products may be one method of transmission of the infectious agent for sCJD.

 


 

PLEASE REMEMBER ;

 

The Akron, Ohio-based CJD Foundation said the Center for Disease Control revised that number in October of 2004 to about one in 9,000 CJD cases per year in the population group age 55 and older.

 

HAVE YOU GOT YOUR CJD QUESTIONNAIRE ASKING REAL QUESTIONS PERTAINING TO ROUTE AND SOURCE OF THE TSE AGENT THAT KILLED YOUR LOVED ONE ???

 

if not, why not...

 

Friday, November 30, 2007

 

CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION

 


 


 

Friday, January 10, 2014

 

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

 


 


 

Sunday, February 08, 2015

 

FDA SCIENCE BOARD TO THE FOOD AND DRUG ADMINISTRATION BOVINE HEPARIN BSE CJD TSE PRION Wednesday, June 4, 2014

 


 

Tuesday, March 5, 2013

 

Use of Materials Derived From Cattle in Human Food and Cosmetics; Reopening of the Comment Period FDA-2004-N-0188-0051 (TSS SUBMISSION)

 

FDA believes current regulation protects the public from BSE but reopens comment period due to new studies

 


 

Monday, March 02, 2015

Rapid and Sensitive RT-QuIC Detection of Human Creutzfeldt-Jakob Disease Using Cerebrospinal Fluid
http://creutzfeldt-jakob-disease.blogspot.com/2015/03/rapid-and-sensitive-rt-quic-detection.html

 

TSS