Bovine spongiform encephalopathy: the effect of oral exposure dose on attack rate and incubation period in cattle
G. A. H. Wells,1 T. Konold,1 M. E. Arnold,1 A. R. Austin,1 3 S. A. C. Hawkins,1 M. Stack,1 M. M. Simmons,1 Y. H. Lee,2 D. Gavier-Wide´n,3 M. Dawson1 4 and J. W. Wilesmith1 1 Correspondence G. A. H. Wells
g.a.h.wells@vla.defra.gsi.gov.uk
1 Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
2 National Veterinary Research and Quarantine Service, Anyang, Republic of Korea
3 National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden
Received 27 July 2006
Accepted 18 November 2006
The dose–response of cattle exposed to the bovine spongiform encephalopathy (BSE) agent is an important component of modelling exposure risks for animals and humans and thereby, the modulation of surveillance and control strategies for BSE. In two experiments calves were dosed orally with a range of amounts of a pool of brainstems from BSE-affected cattle. Infectivity in the pool was determined by end-point titration in mice. Recipient cattle were monitored for clinical disease and, from the incidence of pathologically confirmed cases and their incubation periods (IPs), the attack rate and IP distribution according to dose were estimated. The dose at which 50 % of cattle would be clinically affected was estimated at 0.20 g brain material used in the experiment, with 95 % confidence intervals of 0.04–1.00 g. The IP was highly variable across all dose groups and followed a log-normal distribution, with decreasing mean as dose increased. There was no evidence of a threshold dose at which the probability of infection became vanishingly small, with 1/15 (7 %) of animals affected at the lowest dose (1 mg).
snip...
DISCUSSION
The study has demonstrated that disease in cattle can be produced by oral exposure to as little as 1 mg brain homogenate (¡100.4 RIII mouse i.c./i.p. ID50 units) from clinically affected field cases of BSE and that the limiting dose for infection of calves is lower than this exposure...
snip...end
P04.27
Experimental BSE Infection of Non-human Primates: Efficacy of the Oral Route
Holznagel, E1; Yutzy, B1; Deslys, J-P2; Lasm�zas, C2; Pocchiari, M3; Ingrosso, L3; Bierke, P4; Schulz-Schaeffer, W5; Motzkus, D6; Hunsmann, G6; L�wer, J1 1Paul-Ehrlich-Institut, Germany; 2Commissariat � l�Energie Atomique, France; 3Instituto Superiore di Sanit�, Italy; 4Swedish Institute for Infectious Disease control, Sweden; 5Georg August University, Germany; 6German Primate Center, Germany
Background:
In 2001, a study was initiated in primates to assess the risk for humans to contract BSE through contaminated food. For this purpose, BSE brain was titrated in cynomolgus monkeys.
Aims:
The primary objective is the determination of the minimal infectious dose (MID50) for oral exposure to BSE in a simian model, and, by in doing this, to assess the risk for humans. Secondly, we aimed at examining the course of the disease to identify possible biomarkers.
Methods:
Groups with six monkeys each were orally dosed with lowering amounts of BSE brain: 16g, 5g, 0.5g, 0.05g, and 0.005g. In a second titration study, animals were intracerebrally (i.c.) dosed (50, 5, 0.5, 0.05, and 0.005 mg).
Results:
In an ongoing study, a considerable number of high-dosed macaques already developed simian vCJD upon oral or intracerebral exposure or are at the onset of the clinical phase. However, there are differences in the clinical course between orally and intracerebrally infected animals that may influence the detection of biomarkers.
Conclusions:
Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate. The difference in the incubation period between 5 g oral and 5 mg i.c. is only 1 year (5 years versus 4 years). However, there are rapid progressors among orally dosed monkeys that develop simian vCJD as fast as intracerebrally inoculated animals.
The work referenced was performed in partial fulfilment of the study �BSE in primates� supported by the EU (QLK1-2002-01096).
look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE;
Risk of oral infection with bovine spongiform encephalopathy agent in primates
Corinne Ida Lasm�zas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Fr�d�ric Auvr�, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Sal�s, Gerald Wells, Paul Brown, Jean-Philippe Deslys Summary The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.
snip...
BSE bovine brain inoculum
100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 0�1 mg 0�01 mg
Primate (oral route)* 1/2 (50%)
Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%)
RIII mice (ic ip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)
PrPres biochemical detection
The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was
inoculated into mice and cattle.8 *Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the first positive animal (%). The accuracy of
bioassays is generally judged to be about plus or minus 1 log. ic ip=intracerebral and int****ritoneal.
Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula
Published online January 27, 2005
It is clear that the designing scientists must
also have shared Mr Bradley's surprise at the results because all the dose
levels right down to 1 gram triggered infection.
6. It also appears to me that Mr Bradley's answer (that it would take less than say 100 grams) was probably given with the benefit of hindsight; particularly if one considers that later in the same answer Mr Bradley expresses his surprise that it could take as little of 1 gram of brain to cause BSE by the oral route within the same species. This information did not become available until the "attack rate" experiment had been completed in 1995/96. This was a titration experiment designed to ascertain the infective dose. A range of dosages was used to ensure that the actual result was within both a lower and an upper limit within the study and the designing scientists would not have expected all the dose levels to trigger infection. The dose ranges chosen by the most informed scientists at that time ranged from 1 gram to three times one hundred grams. It is clear that the designing scientists must have also shared Mr Bradley's surprise at the results because all the dose levels right down to 1 gram triggered infection.
RESEARCH ARTICLE
Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease
Nathaniel D. Denkers1☯, Clare E. Hoover2☯, Kristen A. DavenportID3, Davin M. Henderson1, Erin E. McNultyID1, Amy V. Nalls1, Candace K. Mathiason1, Edward A. HooverID1*
1 Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America, 2 AstraZeneca Inc., Waltham, Massachusetts, United States of America, 3 Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America ☯ These authors contributed equally to this work. * Edward.hoover@colostate.edu
Abstract
The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogene- sis. We orally inoculated white-tailed deer with either single or multiple divided doses of pri- ons of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD- positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD min- imum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.
Snip...
Discussion
As CWD expands across North America and Scandinavia, how this disease is transmitted so efficiently remains unclear, given the low concentrations of prions shed in secretions and excretions [13, 14]. The present studies demonstrated that a single oral exposure to as little as 300nmg of CWD-positive brain or equivalent saliva can initiate infection in 100% of exposed white-tailed deer. However, distributing this dose as 10, 30 ng exposures failed to induce infec- tion. Overall, these results suggest that the minimum oral infectious exposure approaches 100 to 300 ng of CWD-positive brain equivalent. These dynamics also invite speculation as to whether potential infection co-factors, such as particle binding [46, 47] or compromises in mucosal integrity may influence infection susceptibility, as suggested from two studies in rodent models [48, 49].
Few studies in rodent models have explored oral infection with murine or hamster adapted scrapie by assessing the same total dose administered as a single bolus vs. the same bolus divided into fractional, sequential exposures [50–52]. The results reported by Diringer et al. [50] and Jacquemot et al. [52] have indicated that divided-dose exposures were as effective as a single bolus only if the interval between doses was short (1–2 days). In deer, we likewise found that when a total dose of 300 ng of brain was administered as 10 doses divided doses over 12 weeks this exposure failed to induce CWD infection, whereas three weekly 100 ng doses (300 ng total) induced infection. While this latter outcome may have involved an additive dynamic, we cannot exclude that a dose 100 ng alone also may have been sufficient to establish infection. Our conclusions here are unfortunately limited by the absence of a single 100 ng dose group. Additional experiments are needed to further directly compare single vs. divided exposures to strengthen the tenet that establishment of CWD infection is more a threshold than cumulative dose phenomenon.
We also sought to examine a relatively unexamined possibility that prions emanating from different tissues and/or cells may possess different capacities to establish infections by mucosal routes. Our results indicated that brain and saliva inocula containing similar levels of prion seeding activity, also had similar infectivity, which did not support our hypothesis that saliva prions may be more infectious by mucosal routes. There are of course, several caveats bearing on this conclusion. These could include: the inherent limits in using an in vitro seeding assay as a surrogate to equate in vivo infectivity, the likelihood that small differences in prion suscep- tibility among deer may be more significant at very low exposure doses, and the greater varia- tion of inoculum uptake and routing through mucosal surfaces associated with the oral route of exposure.
The chief correlate we observed between magnitude of infectious dose and disease course was in time from exposure to first detected amplification of prions in tonsil, an event which is closely followed by or concurrent with detection in pharyngeal lymph nodes [41]. Once a threshold dose was established, the subsequent pathogenesis of infection and disease appeared to vary little.
In addition to potential cofactors that could influence CWD infectivity, such as particle binding [47] and compromised mucosal integrity [48, 53], there is PRNP genotype, in which polymorphisms at codon 96 of the white-tailed deer are known to affect the temporal dynam- ics of CWD infections [23, 41, 45]. In the present studies, most cohorts of 96GG deer became CWD-positive before 96GS animals in the same exposure group [cohorts 1, 2, 4, 6]. Thus, the low dose studies are consistent with the current concept of delayed conversion rate in PRNP 96GS vs. 96GG white-tailed deer [44].
In conclusion, we have attempted to model and better understand CWD infection relative to natural exposure. The results demonstrate: (a) that the minimum CWD oral infectious dose is vastly lower than historical studies used to establish infection; (b) that a direct relationship exists between dose and incubation time to first prion replication detection in tonsils, irrespec- tive of genotype; (c) that a difference was not discernible between brain vs. saliva source prions in ability to establish infection or in resultant disease course; and (d) that the CWD infection process appears to conform more to a threshold dose than an accumulative dose dynamic.
FDA Reports on VFD Compliance
John Maday
August 30, 2019 09:46 AM VFD-Form 007 (640x427)
Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday )
Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary.
On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.
Overall, the FDA reports a high level of compliance across the affected livestock-industry sectors.
In fiscal year 2016, FDA began a small, three-part pilot inspection program that began with inspectors visiting feed distributors to review randomly selected VFD documents. The inspectors then selected one VFD at the distributor and conducted further inspections of the veterinarian and producer (client) named on that VFD.
In fiscal years 2017 and 2018, FDA continued those three-part inspections and expanded the program to include state feed regulatory partners. In fiscal year 2017, state personnel inspected VFD distributors and reviewed selected VFDs for compliance with the requirements. In 2018, those state inspectors began conducting three-part inspections, similar to those conducted by the FDA investigators. With state inspectors contributing, the number of VFD inspections increased from 57 in 2016 to 130 in 2017 and 269 during 2018.
Of the 269 inspections during 2018, 230 required no action, 38 indicated voluntary action and just one indicated official enforcement action.
Key findings in the report include:
Distributors (2018)
Distributor had notified FDA of their intent to distribute VFD feeds -- 94.8%
Distributors who distributed a VFD feed that complied with the terms of the VFD -- 91.5%
Distributors who manufacture VFD feed: Drug inventory or production records showed the correct amount of drug was added to the feed for the VFD reviewed -- 96.7%
Distributors who manufacture VFD feed: Labels and formulas matched the VFD reviewed -- 91.0%
Distributor’s VFD feed labels contained the VFD caution statement -- 77.2%
Veterinarians
Veterinarians had an active license in the state where the VFD feed authorized on the VFD order(s) is being fed -- 100%
VFDs included veterinarians’ electronic or written signature -- 98.6%
VFDs included the withdrawal time, special instructions, and/or cautionary statements -- 95.3%
Producers
Client did not feed VFD feed beyond the expiration date on the VFD -- 100%
Client fed VFD feed to the animals authorized on the VFD (number, species, and/or production class) -- 100%
Client fed VFD feed for the duration identified on the VFD -- 100%
Client complied with the special instructions on the VFD -- 100%
FDA issued just one warning letter following inspections during fiscal year 2018, for a feed mill that “adulterated and misbranded VFD feed by distributing VFD feed to other distributors without first receiving an acknowledgment letter, in addition to adulterating and misbranding medicated and non-medicated feed for other reasons.”
In its report, FDA reminds stakeholders that VFD medicated feeds must be used in according to the approved conditions of use and must be under the oversight of a licensed veterinarian and consistent with a lawful VFD order. The agency intends to continue monitoring compliance, and to provide education, but FDA will also use enforcement strategies when voluntary compliance with the VFD final rule requirements is not achieved.
See the full summary report from FDA.
For more on the VFD rules and compliance, see these articles from BovineVetOnline.com.
VFD Audits: What to Expect
VFD Audits: Start with the Feed Distributor
FDA Draft Guidance Updates VFD Q&A
***>''Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements.''<***
THE USA Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) of August 1997 was/is a colossal failure. it was nothing but ink on paper.
But worse yet, recent science has shown that cwd tse prion will transmit to pigs by ORAL routes, and now science shows that scrapie tse prion will also transmit to pigs by oral route. Terrible news...
cattle, pigs, sheep, cwd, tse, prion, oh my!
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research
Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
Author item MOORE, SARAH - Orise Fellow item Kunkle, Robert item KONDRU, NAVEEN - Iowa State University item MANNE, SIREESHA - Iowa State University item SMITH, JODI - Iowa State University item KANTHASAMY, ANUMANTHA - Iowa State University item WEST GREENLEE, M - Iowa State University item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:
Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.
Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 month challenge groups). The remaining pigs (>6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.
Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%).
Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research
Title: The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP
Author item MOORE, S - Orise Fellow item Kokemuller, Robyn item WEST-GREENLEE, M - Iowa State University item BALKEMA-BUSCHMANN, ANNE - Friedrich-Loeffler-institut item GROSCHUP, MARTIN - Friedrich-Loeffler-institut item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 5/10/2018 Publication Date: 5/22/2018 Citation: Moore, S.J., Kokemuller, R.D., West-Greenlee, M.H., Balkema-Buschmann, A., Groschup, M.H., Greenlee, J.J. 2018. The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP. Prion 2018, Santiago de Compostela, Spain, May 22-25, 2018. Paper No. WA15, page 44.
Interpretive Summary:
Technical Abstract: We have previously shown that the chronic wasting disease (CWD) agent from white-tailed deer can be transmitted to domestic pigs via intracranial or oral inoculation although with low attack rates and restricted PrPSc accumulation. The objective of this study was to assess the potential for cross-species transmission of pig-passaged CWD using bioassay in transgenic mice. Transgenic mice expressing human (Tg40), bovine (TgBovXV) or porcine (Tg002) PRNP were inoculated intracranially with 1% brain homogenate from a pig that had been intracranially inoculated with a pool of CWD from white-tailed deer. This pig developed neurological clinical signs, was euthanized at 64 months post-inoculation, and PrPSc was detected in the brain. Mice were monitored daily for clinical signs of disease until the end of the study. Mice were considered positive if PrPSc was detected in the brain using an enzyme immunoassay (EIA). In transgenic mice expressing porcine prion protein the average incubation period was 167 days post-inoculation (dpi) and 3/27 mice were EIA positive (attack rate = 11%). All 3 mice were found dead and clinical signs were not noted prior to death. One transgenic mouse expressing bovine prion protein was euthanized due to excessive scratching at 617 dpi and 2 mice culled at the end of the study at 700 dpi were EIA positive resulting in an overall attack rate of 3/16 (19%). None of the transgenic mice expressing human prion protein that died or were euthanized up to 769 dpi were EIA positive and at study end point at 800 dpi 2 mice had positive EIA results (overall attack rate = 2/20 = 10%). The EIA optical density (OD) readings for all positive mice were at the lower end of the reference range (positive mice range, OD = 0.266-0.438; test positive reference range, OD = 0.250-4.000). To the authors’ knowledge, cervid-derived CWD isolates have not been successfully transmitted to transgenic mice expressing human prion protein. The successful transmission of pig-passaged CWD to Tg40 mice reported here suggests that passage of the CWD agent through pigs results in a change of the transmission characteristics which reduces the transmission barrier of Tg40 mice to the CWD agent. If this biological behavior is recapitulated in the original host species, passage of the CWD agent through pigs could potentially lead to increased pathogenicity of the CWD agent in humans.
cwd scrapie pigs oral routes
***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***
>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***
***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%).
***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion
so far, we have been lucky. to date, with the science at hand, no cwd transmitted to cattle, that has been documented, TO DATE, WITH THE SCIENCE AT HAND, it's not to say it has not already happened, just like with zoonosis of cwd i.e. molecular transmission studies have shown that cwd transmission to humans would look like sporadic cjd, NOT nvCJD or what they call now vCJD. the other thing is virulence and or horizontal transmission. this is very concerning with the recent fact of what seems to be a large outbreak of a new tse prion disease in camels in Africa. there is much concern now with hay, straw, grains, and such, with the cwd tse prion endemic countries USA, Canada. what is of greatest concern is the different strains of cwd, and the virulence there from? this thing (cwd) keeps mutating to different strains, and to different species, the bigger the chance of one of these strains that WILL TRANSMIT TO CATTLE OR HUMANS, and that it is documented (i believe both has already occured imo with scienct to date). with that said, a few things to ponder, and i am still very concerned with, the animal feed. we now know from transmission studies that cwd and scrapie will transmit to pigs by oral routes. the atypical bse strains will transmit by oral routes. i don't mean to keep kicking a mad cow, just look at the science;
***> cattle, pigs, sheep, cwd, tse, prion, oh my!
***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006).
Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable.
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
snip.....
In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES.
It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
snip.....
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip.....
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
snip.....
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
snip.....
TUESDAY, APRIL 18, 2017
*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***
THURSDAY, SEPTEMBER 26, 2019
Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics
U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001
Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001
Date: Tue, 9 Jan 2001 16:49:00 -0800
From: "Terry S. Singeltary Sr."
Reply-To: Bovine Spongiform Encephalopathy
snip...
[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.
[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?
[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]
[host Richard] could you repeat the question?
[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?
[not sure whom ask this] what group are you with?
[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.
[not sure who is speaking] could you please disconnect Mr. Singeltary
[TSS] you are not going to answer my question?
[not sure whom speaking] NO
snip...see full archive and more of this;
H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism:
clinical and pathologic features in wild-type and E211K cattle following intracranial inoculation
H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism: clinical and pathologic features in wild-type and E211K cattle following intracranial inoculation
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Title: H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism: clinical and pathologic features in wild-type and E211K cattle following intracranial inoculation
Authors
item Moore, Sarah - item West Greenlee, Mary - item Smith, Jodi item Nicholson, Eric item Vrentas, Catherine item Greenlee, Justin
Submitted to: Prion
Publication Type: Abstract Only
Publication Acceptance Date: August 12, 2015
Publication Date: May 25, 2015
Citation: Moore, S.J., West Greenlee, M.H., Smith, J., Nicholson, E., Vrentas, C., Greenlee, J. 2015. H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism: clinical and pathologic features in wild-type and E211K cattle following intracranial inoculation. Prion 2015. p. S5.
Technical Abstract: In 2006 an H-type bovine spongiform encephalopathy (BSE) case was reported in an animal with an unusual polymorphism (E211K) in the prion protein gene. Although the prevalence of this polymorphism is low, cattle carrying the K211 allele are predisposed to rapid onset of H-type BSE when exposed. The purpose of this study was to investigate the phenotype of this BSE strain in wild-type (E211E) and E211K heterozygous cattle. One calf carrying the wild-type allele and one E211K calf were inoculated intracranially with H-type BSE brain homogenate from the US 2006 case that also carried one K211 allelle. In addition, one wild-type calf and one E211K calf were inoculated intracranially with brain homogenate from a US 2003 classical BSE case. All animals succumbed to clinical disease. Survival times for E211K H-type BSE inoculated catttle (10 and 18 months) were shorter than the classical BSE inoculated cattle (both 26 months). Significant changes in retinal function were observed in H-type BSE challenged cattle only. Animals challenged with the same inoculum showed similar severity and neuroanatomical distribution of vacuolation and disease-associated prion protein deposition in the brain, though differences in neuropathology were observed between E211K H-type BSE and classical BSE inoculated animals. Western blot results for brain tissue from challenged animals were consistent with the inoculum strains. This study demonstrates that the phenotype of E211K H-type BSE remains stable when transmitted to cattle without the E211K polymorphism, and exhibits a number of features that differ from classical BSE in both wild-type and E211K cattle.
*** All animals succumbed to clinical disease. Survival times for E211K H-type BSE inoculated catttle (10 and 18 months) were shorter than the classical BSE inoculated cattle (both 26 months). ***
-------- Original Message --------
Subject: re-BSE prions propagate as either variant CJD-like or sporadic CJD
Date: Thu, 28 Nov 2002 10:23:43 -0000
From: "Asante, Emmanuel A" e.asante@ic.ac.uk
To: "'flounder@wt.net'" flounder@wt.net
Dear Terry,
I have been asked by Professor Collinge to respond to your request. I am a Senior Scientist in the MRC Prion Unit and the lead author on the paper. I have attached a pdf copy of the paper for your attention.
Thank you for your interest in the paper.
In respect of your first question, the simple answer is, ***yes. As you will find in the paper, we have managed to associate the alternate phenotype to type 2 PrPSc, the commonest sporadic CJD. It is too early to be able to claim any further sub-classification in respect of Heidenhain variant CJD or Vicky Rimmer's version. It will take further studies, which are on-going, to establish if there are sub-types to our initial finding which we are now reporting. The main point of the paper is that, as well as leading to the expected new variant CJD phenotype, BSE transmission to the 129-methionine genotype can lead to an alternate phenotype which is indistinguishable from type 2 PrPSc.
I hope reading the paper will enlighten you more on the subject. If I can be of any further assistance please to not hesitate to ask. Best wishes..
Emmanuel Asante
< >
____________________________________
Dr. Emmanuel A Asante MRC Prion Unit & Neurogenetics Dept. Imperial College School of Medicine (St. Mary's) Norfolk Place, LONDON W2 1PG Tel: +44 (0)20 7594 3794 Fax: +44 (0)20 7706 3272 email: e.asante@ic.ac..uk (until 9/12/02) New e-mail: e.asante@prion.ucl.ac.uk (active from now)
_________end...TSS___________________
***Our study demonstrates susceptibility of adult cattle to oral transmission of classical BSE. ***
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. ***
P.86: Estimating the risk of transmission of BSE and scrapie to ruminants and humans by protein misfolding cyclic amplification
Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi Murayama National Institute of Animal Health; Tsukuba, Japan
To assess the risk of the transmission of ruminant prions to ruminants and humans at the molecular level, we investigated the ability of abnormal prion protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding cyclic amplification (PMCA).
Six rounds of serial PMCA was performed using 10% brain homogenates from transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc seed from typical and atypical BSE- or typical scrapie-infected brain homogenates from native host species. In the conventional PMCA, the conversion of PrPC to PrPres was observed only when the species of PrPC source and PrPSc seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested prion strains. On the other hand, human PrPC was converted by PrPSc from typical and H-type BSE in this PMCA condition.
Although these results were not compatible with the previous reports describing the lack of transmissibility of H-type BSE to ovine and human transgenic mice, ***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
================
RE-Molecular, Biochemical and Genetic Characteristics of BSE in Canada
Posted by flounder on 19 May 2010 at 21:21 GMT
Full text Singeltary et al PLOS
> Epidemiological investigations conducted by USDA personnel failed to reveal any evidence of a feed source contaminated with TSE material fed to this animal
LMAO!
BANNED MAD COW FEED IN COMMERCE IN ALABAMA
Date: September 6, 2006 at 7:58 am PST PRODUCT
a) EVSRC Custom dairy feed, Recall # V-130-6;
b) Performance Chick Starter, Recall # V-131-6;
c) Performance Quail Grower, Recall # V-132-6;
d) Performance Pheasant Finisher, Recall # V-133-6.
CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.
REASON
Dairy and poultry feeds were possibly contaminated with ruminant based protein.
VOLUME OF PRODUCT IN COMMERCE 477.72 tons
DISTRIBUTION AL
______________________________
PRODUCT Bulk custom dairy pre-mixes,
Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete. REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.
VOLUME OF PRODUCT IN COMMERCE 350 tons
DISTRIBUTION AL and MS
______________________________
PRODUCT
a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb.. bags, Recall # V-121-6;
b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6;
c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6;
d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;
e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;
f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;
g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6
CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.
REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags
DISTRIBUTION AL, GA, MS, and TN
END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006
###
Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006
Date: August 6, 2006 at 6:16 pm PST PRODUCT
a) CO-OP 32% Sinking Catfish, Recall # V-100-6;
b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;
c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;
d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;
e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;
f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;
g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;
h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;
i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;
j) CO-OP LAYING CRUMBLES, Recall # V-109-6;
k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;
l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;
m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE
Product manufactured from 02/01/2005 until 06/06/2006
RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.
REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 125 tons
DISTRIBUTION AL and FL
END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006
###
MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II
______________________________
PRODUCT
a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;
b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;
c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6;
d) Feather Meal, Recall # V-082-6 CODE
a) Bulk
b) None
c) Bulk
d) Bulk
RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.
REASON
Possible contamination of animal feeds with ruminent derived meat and bone meal.
VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons
DISTRIBUTION Nationwide
END OF ENFORCEMENT REPORT FOR July 12, 2006
###
10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007
Date: March 21, 2007 at 2:27 pm PST
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II
___________________________________
PRODUCT
Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007
CODE
Cattle feed delivered between 01/12/2007 and 01/26/2007
RECALLING FIRM/MANUFACTURER
Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.
Firm initiated recall is ongoing.
REASON
Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE
42,090 lbs.
DISTRIBUTION
WI
___________________________________
PRODUCT
Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007
CODE
The firm does not utilize a code - only shipping documentation with commodity and weights identified.
RECALLING FIRM/MANUFACTURER
Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.
REASON
Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE
9,997,976 lbs.
DISTRIBUTION
ID and NV
END OF ENFORCEMENT REPORT FOR MARCH 21, 2007
Saturday, August 14, 2010
BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY
(see mad cow feed in COMMERCE IN ALABAMA...TSS)
2009 UPDATE ON ALABAMA AND TEXAS MAD COWS 2005 and 2006
***> Wednesday, January 23, 2019
***> CFIA SFCR Guidance on Specified risk material (SRM) came into force on January 15, 2019 <***
TUESDAY, JANUARY 5, 2021
Exploration of genetic factors resulting in abnormal disease in cattle experimentally challenged with bovine spongiform encephalopathy
Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.
snip...
The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...
Sunday, January 10, 2021
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission
Greetings APHIS et al,
I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.
THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal.
Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban.
The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.
WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.
WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.
AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...
WEDNESDAY, MARCH 24, 2021
USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA
https://animalhealthreportpriontse.blogspot.com/2021/03/usda-animal-and-plant-health-inspection.html
WEDNESDAY, DECEMBER 2, 2020
EFSA Evaluation of public and animal health risks in case of a delayed post-mortem inspection in ungulates EFSA Panel on Biological Hazards (BIOHAZ) ADOPTED: 21 October 2020
i wonder if a 7 month delay on a suspect BSE case in Texas is too long, on a 48 hour turnaround, asking for a friend???
MONDAY, NOVEMBER 30, 2020
***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION
see updated concerns with atypical BSE from feed and zoonosis...terry
WEDNESDAY, DECEMBER 23, 2020
BSE research project final report 2005 to 2008 SE1796 SID5
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
https://www.nature.com/articles/srep11573
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160
1: J Infect Dis 1980 Aug;142(2):205-8
Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.
Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.
Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.
snip...
The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.
PMID: 6997404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract
Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"
Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.
snip...
76/10.12/4.6
Nature. 1972 Mar 10;236(5341):73-4.
Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).
Gibbs CJ Jr, Gajdusek DC.
Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0
Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)
C. J. GIBBS jun. & D. C. GAJDUSEK
National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).
Wednesday, February 16, 2011
IN CONFIDENCE
SCRAPIE TRANSMISSION TO CHIMPANZEES
IN CONFIDENCE
WEDNESDAY, MARCH 24, 2021
USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA
https://animalhealthreportpriontse.blogspot.com/2021/03/usda-animal-and-plant-health-inspection.html
terry
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.