Tuesday, January 17, 2017

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE 2016 to 2017 BSE TSE PRION


I would kindly like to comment on this FDA BSE/Ruminant Feed Inspections Firms Inventory (excel format)4 format, for reporting these breaches of BSE TSE prion protocols, from the extensive mad cow feed ban warning letters the fda use to put out for each violations. simply put, this excel format sucks, and the FDA et al intentionally made it this difficult to follow the usda fda mad cow follies. this is an intentional format to make it as difficult as possible to follow these breaches of the mad cow TSE prion safety feed protocols. to have absolutely no chronological or numerical order, and to format such violations in a way that they are almost impossible to find, says a lot about just how far the FDA and our fine federal friends will go through to hide these continued violations of the BSE TSE prion mad cow feed ban, and any breaches of protocols there from. once again, the wolf guarding the henhouse $$$

NAI = NO ACTION INDICATED

OAI = OFFICIAL ACTION INDICATED

VAI = VOLUNTARY ACTION INDICATED

RTS = REFERRED TO STATE

OAI (Official Action Indicated) when inspectors find significant objectionable conditions or practices and believe that regulatory sanctions are warranted to address the establishment’s lack of compliance with the regulation. An example of an OAI classification would be findings of manufacturing procedures insufficient to ensure that ruminant feed is not contaminated with prohibited material. Inspectors will promptly re-inspect facilities classified OAI after regulatory sanctions have been applied to determine whether the corrective actions are adequate to address the objectionable conditions.


2016


6599

CIN-DO 3011082279         Shur-Green Farms           9159 State Route 118      Ansonia OH          45303-9778         OPR                                       11/22/16              OAI       

17590

KAN-DO               3012014525         Bertrand Bulls    917 E 14th St S  Wellington          KS           67152-8080         OPR                                       02/09/16              OAI                                                                                        


2015


1822

BLT-DO 3011514118         Long Green Farms LLC    20 Long Green Farm Lane Crothers Road               Rising Sun            MD                21911    OPR       FR, OF   NP          10/27/15              OAI        Y

2089

BLT-DO 3004354792         Mid Atlantic Gin, Llc        1378 Southampton Pkwy             Emporia               VA          23847-6663                OPR       AF, PF    NP          05/04/15              OAI        Y

26861

MIN-DO               3007033290         Neugebauer Brothers Dairy         14197 Sd Highway 40      Hermosa              SD                57744-5048         OPR       FR, OF   NP          06/04/15              OAI        Y

31128

NYK-DO 3009740213         Woody Hill Farms             4330 State Route 22        Salem    NY          12865-3426         OPR       FR, OF          NP          05/12/15              OAI        Y

32025

PHI-DO 3009127255         Zylstra Dairy Farms, Inc. 1161 Geiger Rd Friedens              PA          15541-7703         OPR       FR                HP          01/07/15              OAI        Y


PLEASE NOTE TOO MANY VAI LISTED TO DOCUMENT HERE, I ACTUALLY LOST COUNT TRYING TO FILE IN THIS REPORT FROM THIS EXCEL SPREAD SHEET, so i have omitted those reports, but there are countless feed violations reported as VAI...see for yourself, once excel loads, just click on ctrl and the f key, and then type in VAI, then go to next, next, next, and so on. i never did get to the bottom...terry
  

PREVIOUS YEARS OF MAD COW FEED IN THE USA SINCE THE INFAMOUS 8/4/1997 RUMINANT FEED BAN WAS WROTE DOWN ON PAPER, and that's all it was was ink on paper...tss

 Monday, October 26, 2015

 FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE October 2015


Tuesday, December 23, 2014

 FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION


Sunday, December 15, 2013

 FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE


ONE DECADE POST MAD COW FEED BAN OF AUGUST 1997...2007

10,000,000 POUNDS REASON Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

2007

Date: March 21, 2007 at 2:27 pm PST

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II PRODUCT

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007 CODE Cattle feed delivered between 01/12/2007 and 01/26/2007 RECALLING FIRM/MANUFACTURER Pfeiffer, Arno, Inc, Greenbush,
WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.

REASON Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE 42,090 lbs. DISTRIBUTION WI

___________________________________

PRODUCT Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

CODE The firm does not utilize a code - only shipping documentation with commodity and weights identified.

RECALLING FIRM/MANUFACTURER Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007.

Firm initiated recall is complete.

REASON Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE 9,997,976 lbs. DISTRIBUTION ID and NV

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm

NEW URL LINK;


Subject: Re: TEXAS CONFIRMATION OF BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION IN ONE SAMPLE OF SORGHUM DDGS OUT OF 168 DG SAMPLES

 ***UDATED CORRECTION BY AUTHOR...SEE EMAIL TO ME...terry

 From: Kyung-Min Lee Sent: Thursday, October 01, 2015 1:39 PM

 To: Terry S. Singeltary Sr. ; BSE-L@LISTS.AEGEE.ORG

 Cc: CJD-L@LISTS.AEGEE.ORG ; cjdvoice@yahoogroups.com ; bloodcjd@yahoogroups.com ; jcattanach@foodprotection.org ; cnc3@psu.edu ; dloynachan@foodprotection.org ; lhovey@foodprotection.org ; Timothy J. Herrman

 Subject: RE: TEXAS CONFIRMATION OF BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION IN ONE SAMPLE OF SORGHUM DDGS OUT OF 168 DG SAMPLES

 Dear Terry S. Singeltary Sr.

 Thank for your interest and concern about our published article entitled “Evaluation of Selected Nutrients and Contaminants in Distillers Grains from Ethanol Production in Texas”. I should apologize you and others that there were some errors and misleading statements in this article due to inappropriate terminology. The statement you were concerned about was corrected to "One sorghum DDGS out of 168 DG samples was contaminated with animal protein prohibited for use in ruminant feed and was channeled to poultry feed." We requested the journal editor to correct some errors and the relevant statements, or to withdraw the article from the journal.

Again I sincerely apologize for any confusion and inconvenience this may cause. Thanks.

best wishes,

Kyung-Min

Kyung-Min Lee, Ph. D. Research Scientist Office of the Texas State Chemist

Texas A&M AgriLife Research P.O. Box 3160, College Station, TX 77841-3160 Phone: 979-845-4113 (ext 132) Email:kml@otsc.tamu.edu Fax: 979-845-1389

snip...end...tss

my link corrected

Sunday, September 27, 2015

TEXAS CONFIRMATION OF BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION IN ONE SAMPLE OF SORGHUM DDGS OUT OF 168 DG SAMPLES



Saturday, July 23, 2016

BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016


Tuesday, July 26, 2016

Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016


Monday, June 20, 2016

Specified Risk Materials SRMs BSE TSE Prion Program


TUESDAY, APRIL 19, 2016
Docket No. FDA-2013-N-0764 for Animal Feed Regulatory Program Standards Singeltary Comment Submission


Wednesday, December 21, 2016

TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES 2016 ANNUAL REPORT ARS RESEARCH


Thursday, December 08, 2016

USDA APHIS National Scrapie Eradication Program October 2016 Monthly Report Fiscal Year 2017 atypical NOR-98 Scrapie



Tuesday, August 9, 2016

Concurrence with OIE Risk Designations for Bovine Spongiform Encephalopathy [Docket No. APHIS-2015-0055]

BILLING CODE: 3410-34-P DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service


Monday, January 09, 2017

*** Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle ***

CDC Volume 23, Number 2—February 2017


THIS SHOULD BE VERY IMPORTANT TO ALL CATTLE RANCHERS, BEEF PRODUCERS, AND OR DAIRY FARMERS

2016 Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed Singeltary Submission

V. Use in animal feed of material from deer and elk NOT considered at high risk for CWD FDA continues to consider materials from deer and elk NOT considered at high risk for CWD to be acceptable for use in NON-RUMINANT animal feeds in accordance with current agency regulations, 21 CFR 589.2000. Deer and elk not considered at high risk include: (1) deer and elk from areas not declared by State officials to be endemic for CWD and/or to be CWD eradication zones; and (2) deer and elk that were not at some time during the 60-month period immediately before the time of slaughter in a captive herd that contained a CWD-positive animal.


SNIP...

Greetings again FDA and Mr. Pritchett et al,

MY comments and source reference of sound science on this very important issue are as follows ;

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed Singeltary Submission

I kindly wish to once again submit to Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed.

Thank you kindly for allowing me to comment again, ...and again...and again, on a topic so important, why it is ‘NON-BINDING’ is beyond me.

this should have been finalized and made ‘BINDING’ or MANDATORY OVER A DECADE AGO.

but here lay the problem, once made ‘BINDING’ or ‘MANDATORY’, it is still nothing but ink on paper.

we have had a mad cow feed ban in place since August 1997, and since then, literally 100s of millions of pounds BANNED MAD COW FEED has been sent out to commerce and fed out (see reference materials).

ENFORCEMENT OF SAID BINDING REGULATIONS HAS FAILED US TOO MANY TIMES.

so, in my opinion, any non-binding or voluntary regulations will not work, and to state further, ‘BINDING’ or MANDATORY regulations will not work unless enforced.

with that said, we know that Chronic Wasting Disease CWD TSE Prion easily transmits to other cervid through the oral route.

the old transmission studies of BSE TSE floored scientist once they figured out what they had, and please don’t forget about those mink that were fed 95%+ dead stock downer cow, that all came down with TME. please see ;

It is clear that the designing scientists must also have shared Mr Bradleys surprise at the results because all the dose levels right down to 1 gram triggered infection.


it is clear that the designing scientists must have also shared Mr Bradleys surprise at the results because all the dose levels right down to 1 gram triggered infection.


Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle

Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.

snip...

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...


To further complicate things, we now know that science has shown that plants and vegetables can uptake the TSE Prion, and that the Scrapie agent can still be infectious from soil 16 years later. a frightening thought with the CWD running rampant now in North America (please see source reference materials below).

IF we don’t do this, we have failed, and the TSE Prion agent will continue to spread, as it is doing as we speak.

I strenuously once again urge the FDA and its industry constituents, to make it MANDATORY that all ruminant feed be banned to all ruminants, and this should include all cervids, as well as non-ruminants such as cats and dogs as well, as soon as possible for the following reasons...


Sunday, March 20, 2016

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed Singeltary Submission


Singeltary previous submission to DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability

DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability Fri, 16 May 2003 11:47:37 0500 EMC 1 Terry S. Singeltary Sr. Vol #: 1

Date: Fri, 16 May 2003 11:47:37 0500 EMC 1 Terry S. Singeltary Sr. Vol #: 1




MARCH 1, 2011

UPDATED CORRESPONDENCE FROM AUTHORS OF THIS STUDY I.E. COLBY, PRUSINER ET AL, ABOUT MY CONCERNS OF THE DISCREPANCY BETWEEN THEIR FIGURES AND MY FIGURES OF THE STUDIES ON CWD TRANSMISSION TO CATTLE ;

----- Original Message -----

From: David Colby

To: flounder9@verizon.net

Cc: stanley@XXXXXXXX

Sent: Tuesday, March 01, 2011 8:25 AM

Subject: Re: FW: re-Prions David W. Colby1,* and Stanley B. Prusiner1,2 + Author Affiliations

Dear Terry Singeltary,

Thank you for your correspondence regarding the review article Stanley Prusiner and I recently wrote for Cold Spring Harbor Perspectives. Dr. Prusiner asked that I reply to your message due to his busy schedule. We agree that the transmission of CWD prions to beef livestock would be a troubling development and assessing that risk is important. In our article, we cite a peer-reviewed publication reporting confirmed cases of laboratory transmission based on stringent criteria. The less stringent criteria for transmission described in the abstract you refer to lead to the discrepancy between your numbers and ours and thus the interpretation of the transmission rate. We stand by our assessment of the literature--namely that the transmission rate of CWD to bovines appears relatively low, but we recognize that even a low transmission rate could have important implications for public health and we thank you for bringing attention to this matter.

Warm Regards, David Colby

--

David Colby, PhDAssistant ProfessorDepartment of Chemical EngineeringUniversity of Delaware


====================END...TSS==============

SNIP...SEE FULL TEXT ;

http://betaamyloidcjd.blogspot.com/2011/01/enlarging-spectrum-of-prion-like.html

UPDATED DATA ON 2ND CWD STRAIN

Wednesday, September 08, 2010

CWD PRION CONGRESS SEPTEMBER 8-11 2010


Research Project: Transmission, Differentiation, and Pathobiology of Transmissible Spongiform Encephalopathies Location: Virus and Prion Diseases of Livestock

Title: TRANSMISSION OF CHRONIC WASTING DISEASE AGENT OF MULE DEER (CWD**MD) TO SUFFOLK SHEEP BY INTRACEREBRAL ROUTE

Authors

Hamir, Amirali Kunkle, Robert Cutlip, Randall - ARS RETIRED Miller, Janice - ARS RETIRED Williams, Elizabeth - UNIVERSITY OF WYOMING Richt, Juergen

Submitted to: European Society of Veterinary Pathology Publication Type: Abstract Publication Acceptance Date: June 5, 2006 Publication Date: August 31, 2006

Citation: Hamir, A., Kunkle, R., Cutlip, R., Miller, J., Williams, E., Richt, J. 2006.

Transmission of chronic wasting disease agent of mule deer (CWD**md) to Suffolk sheep by intracerebral route [abstract]. European Society of Veterinary Pathology 24th Annual Meeting. Paper No. P63. p. 171-172.

Technical Abstract: Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that has been identified in captive and free-ranging cervids in the U.S. since 1967. To determine the transmissibility of CWD to sheep, 8 Suffolk lambs [4 QQ and 4 QR at codon 171 of prion protein (PRNP) gene] were inoculated intracerebrally with a pooled brain suspension from 28 mule deer naturally affected with CWD (CWD**md). Two other lambs (1 QQ and 1 QR at codon 171 of the PRNP gene) were kept as non-inoculated controls. Within 36 months post inoculation (MPI), 2 animals became sick and were euthanized. Only 1 sheep (euthanized at 35 MPI) showed clinical signs that were consistent with those described for scrapie. Microscopic lesions of spongiform encephalopathy (SE) were only seen in the sheep with the clinical signs of TSE and its tissues were positive for the abnormal prion protein (PrP**res) by immunohistochemistry and Western blot. Between 36 and 60 MPI, 3 other sheep were euthanized because of conditions unrelated to TSE. The remaining 3 sheep remained non-clinical at the termination of the study (72 MPI) and were euthanized at that time. One of the 3 animals revealed SE and its tissues were positive for PrP**res. Both sheep positive for PrP**res were homozygous QQ at codon 171. Retrospective examination of the PRNP genotype of the 2 TSE-positive animals revealed that the sheep with clinical prion disease (euthanized at 35 MPI) was heterozygous (AV) and the sheep with the sub-clinical disease (euthanized at 72 MPI) was homozygous (AA) at codon 136 of the PRNP. These findings demonstrate that transmission of the CWD**md agent to sheep via the intracerebral route is possible. Interestingly, the host genotype may play a significant part in successful transmission and incubation period of CWD**md.


Transmission of chronic wasting disease of mule deer to Suffolk sheep following intracerebral inoculation

Amir N. Hamir,1 Robert A. Kunkle, Randall C. Cutlip, Janice M. Miller, Elizabeth S. Williams, Juergen A. Richt

Abstract. To determine the transmissibility of chronic wasting disease (CWD) to sheep, 8 Suffolk lambs of various prion protein genotypes (4 ARQ/ARR, 3 ARQ/ARQ, 1 ARQ/VRQ at codons 136, 154, and 171, respectively) were inoculated intracerebrally with brain suspension from mule deer with CWD (CWDmd). Two other lambs were kept as noninoculated controls. Within 36 months postinoculation (MPI), 2 inoculated animals became sick and were euthanized. Only 1 sheep (euthanized at 35 MPI) showed clinical signs that were consistent with those described for scrapie. Microscopic lesions of spongiform encephalopathy (SE) were only seen in this sheep, and its tissues were determined to be positive for the abnormal prion protein (PrPres) by immunohistochemistry and Western blot. Three other inoculated sheep were euthanized (36 to 60 MPI) because of conditions unrelated to TSE. The 3 remaining inoculated sheep and the 2 control sheep did not have clinical signs of disease at the termination of the study (72 MPI) and were euthanized. Of the 3 remaining inoculated sheep, 1 was found to have SE, and its tissues were positive for PrPres. The sheep with clinical prion disease (euthanized at 35 MPI) was of the heterozygous genotype (ARQ/VRQ), and the sheep with subclinical disease (euthanized at 72 MPH) was of the homozygous ARQ/ARQ genotype. These findings demonstrate that transmission of the CWDmd agent to sheep via the intracerebral route is possible. Interestingly, the host genotype may play a notable part in successful transmission and incubation period of CWDmd.

snip...

Thus far, among domestic animals, CWDmd has been transmitted by the intracerebral route to a goat18 and cattle.5–7 The present findings demonstrate that it is also possible to transmit CWDmd agent to sheep via the intracerebral route. However, the only sheep to develop clinical TSE within 35 MPI was genotypically AV at PRNP codon 136, suggesting that host genotype may play a notable part in successful transmission of the disease in this species. Although in Suffolk sheep the AV variant at codon 136 is very rare,17 selective breeding of Suffolk sheep with this codon has begun in the hope of testing this differential susceptibility hypothesis in a future study of CWDmd transmission to sheep.

Key words: Chronic wasting disease; immunohistochemistry; intracerebral transmission; prion protein; sheep; spongiform encephalopathy.


Research Project: Transmission, Differentiation, and Pathobiology of Transmissible Spongiform Encephalopathies Location: Virus and Prion Diseases of Livestock

Title: EXPERIMENTAL SECOND PASSAGE OF CHRONIC WASTING DISEASE (CWD(MULE DEER)) AGENT TO CATTLE

Authors

Hamir, Amirali Kunkle, Robert Miller, Janice - ARS RETIRED Greenlee, Justin Richt, Juergen

Submitted to: Journal of Comparative Pathology Publication Type: Peer Reviewed Journal Publication Acceptance Date: July 25, 2005 Publication Date: January 1, 2006 Citation: Hamir, A.N., Kunkle, R.A., Miller, J.M., Greenlee, J.J., Richt, J.A. 2006.

Experimental second passage of chronic wasting disease (CWD(mule deer)) agent to cattle. Journal of Comparative Pathology. 134(1):63-69.

Interpretive Summary: To compare the findings of experimental first and second passage of chronic wasting disease (CWD) in cattle, 6 calves were inoculated into the brain with CWD-mule deer agent previously (first) passaged in cattle. Two other uninoculated calves served as controls. Beginning 10-12 months post inoculation (PI), all inoculates lost appetite and weight. Five animals subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months PI, all cattle had been euthanized because of poor prognosis. None of the animals showed microscopic lesions of spongiform encephalopathy (SE) but the CWD agent was detected in their CNS tissues by 2 laboratory techniques (IHC and WB). These findings demonstrate that inoculated cattle amplify CWD agent but also develop clinical CNS signs without manifestation of microscopic lesions of SE. This situation has also been shown to occur following inoculation of cattle with another TSE agent, namely, sheep scrapie. The current study confirms previous work that indicates that the diagnostic tests currently used for confirmation of bovine spongiform encephalopathy (BSE) in the U.S. would detect CWD in cattle, should it occur naturally. Furthermore, it raises the possibility of distinguishing CWD from BSE in cattle due to the absence of microscopic lesions and a unique multifocal distribution of PrPres, as demonstrated by IHC, which in this study, appears to be more sensitive than the WB.

Technical Abstract: To compare clinicopathological findings of first and second passage of chronic wasting disease (CWD) in cattle, a group of calves (n=6) were intracerebrally inoculated with CWD-mule deer agent previously (first) passaged in cattle. Two other uninoculated calves served as controls. Beginning 10-12 months post inoculation (PI), all inoculates lost appetite and lost weight. Five animals subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months PI, all cattle had been euthanized because of poor prognosis. None of the animals showed microscopic lesions of spongiform encephalopathy (SE) but PrPres was detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify CWD PrPres but also develop clinical CNS signs without manifestation of morphologic lesions of SE. This situation has also been shown to occur following inoculation of cattle with another TSE agent, scrapie. The current study confirms previous work that indicates the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) in the U.S. would detect CWD in cattle, should it occur naturally. Furthermore, it raises the possibility of distinguishing CWD from BSE in cattle due to the absence of neuropathologic lesions and a unique multifocal distribution of PrPres, as demonstrated by IHC, which in this study, appears to be more sensitive than the WB.


***These findings demonstrate that inoculated cattle amplify CWD agent but also develop clinical CNS signs without manifestation of microscopic lesions of SE.***

Wednesday, September 21, 2011

Evidence for distinct CWD strains in experimental CWD in ferrets


Wednesday, October 12, 2011

White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation


Wednesday, July 06, 2011

Swine Are Susceptible to Chronic Wasting Disease by Intracerebral Inoculation


WS-02

Scrapie in swine: A diagnostic challenge

Justin J Greenlee1, Robert A Kunkle1, Jodi D Smith1, Heather W. Greenlee2

1National Animal Disease Center, US Dept. of Agriculture, Agricultural Research Service, United States; 2Iowa State University College of Veterinary Medicine

A naturally occurring prion disease has not been recognized in swine, but the agent of bovine spongiform encephalopathy does transmit to swine by experimental routes. Swine are thought to have a robust species barrier when exposed to the naturally occurring prion diseases of other species, but the susceptibility of swine to the agent of sheep scrapie has not been thoroughly tested.

Since swine can be fed rations containing ruminant derived components in the United States and many other countries, we conducted this experiment to test the susceptibility of swine to U.S. scrapie isolates by intracranial and oral inoculation. Scrapie inoculum was a pooled 10% (w/v) homogenate derived from the brains of clinically ill sheep from the 4th passage of a serial passage study of the U.S scrapie agent (No. 13-7) through susceptible sheep that were homozygous ARQ at prion protein residues 136, 154, and 171, respectively. Pigs were inoculated intracranially (n=19) with a single 0.75 ml dose or orally (n=24) with 15 ml repeated on 4 consecutive days. Necropsies were done on a subset of animals at approximately six months post inoculation (PI), at the time the pigs were expected to reach market weight. Remaining pigs were maintained and monitored for clinical signs of TSE until study termination at 80 months PI or when removed due to intercurrent disease (primarily lameness). Brain samples were examined by immunohistochemistry (IHC), western blot (WB), and enzyme-linked immunosorbent assay (ELISA). Brain tissue from a subset of pigs in each inoculation group was used for bioassay in mice expressing porcine PRNP.

At six-months PI, no evidence of scrapie infection was noted by any diagnostic method. However, at 51 months of incubation or greater, 5 animals were positive by one or more methods: IHC (n=4), WB (n=3), or ELISA (n=5). Interestingly, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study).

Swine inoculated with the agent of scrapie by the intracranial and oral routes do not accumulate abnormal prion protein (PrPSc) to a level detectable by IHC or WB by the time they reach typical market age and weight. However, strong support for the fact that swine are potential hosts for the agent of scrapie comes from positive bioassay from both intracranially and orally inoculated pigs and multiple diagnostic methods demonstrating abnormal prion protein in intracranially inoculated pigs with long incubation times.

Curriculum Vitae

Dr. Greenlee is Research Veterinary Medical Officer in the Virus and Prion Research Unit at the National Animal Disease Center, US Department of Agriculture, Agricultural Research Service. He applies his specialty in veterinary anatomic pathology to focused research on the intra- and interspecies transmission of prion diseases in livestock and the development of antemortem diagnostic assays for prion diseases. In addition, knockout and transgenic mouse models are used to complement ongoing experiments in livestock species. Dr. Greenlee has publications in a number of topic areas including prion agent decontamination, effects of PRNP genotype on susceptibility to the agent of sheep scrapie, characterization of US scrapie strains, transmission of chronic wasting disease to cervids and cattle, features of H-BSE associated with the E211 K polymorphism, and the development of retinal assessment for antemortem screening for prion diseases in sheep and cattle. Dr. Greenlee obtained his DVM degree and completed the PhD/residency program in Veterinary Pathology at Iowa State University. He is a Diplomate of the American College of Veterinary Pathologists.

http://prion2016.org

***In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research, however, suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008). It is apparent, though, that CWD is affecting wild and farmed cervid populations in endemic areas with some deer populations decreasing as a result.


Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle

Authors: Nicholas Haley1, Christopher Siepker2, Justin Greenlee3, Jürgen Richt4

 VIEW AFFILIATIONS Affiliations: 1 1Midwestern Univerisity 2 2Kansas State University 3 3USDA, Agricultural Research Service 4 4Kansas State University

Published Ahead of Print: 31 March, 2016 Journal of General Virology doi: 10.1099/jgv.0.000438 Published Online: 31/03/2016

 Chronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease resistant prion protein throughout the central nervous system (CNS), as well as in both lymphatic and excretory tissues - an aspect of prion disease pathogenesis not observed in cattle with BSE. Using seeded amplification through real time quaking induced conversion (RT-QuIC), we investigated whether the bovine host or prion agent was responsible for this aspect of TSE pathogenesis. We blindly examined numerous central and peripheral tissues from cattle inoculated with CWD for prion seeding activity. Seeded amplification was readily detected in the CNS, though rarely observed in peripheral tissues, with a limited distribution similar to that of BSE prions in cattle. This seems to indicate that prion peripheralization in cattle is a host-driven characteristic of TSE infection.


Friday, August 14, 2015

 Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation

 ARS VIRUS AND PRION RESEARCH / Research / Publication #277212

 Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 Title: Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation

 Authors

 item Greenlee, Justin item Nicholson, Eric item Smith, Jodi item Kunkle, Robert item Hamir, Amirali

 Submitted to: Journal of Veterinary Diagnostic Investigation Publication

Type: Peer Reviewed Journal Publication Acceptance

 Date: July 12, 2012

 Publication Date: November 1, 2012

 Citation: Greenlee, J.J., Nicholson, E.M., Smith, J.D., Kunkle, R.A., Hamir, A.N. 2012.

Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation.

 Journal of Veterinary Diagnostic Investigation. 24(6):1087-1093.

 Interpretive Summary: Chronic Wasting Disease (CWD), a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America, is a transmissible spongiform encephalopathy (TSE). TSEs are caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Cattle could be exposed to chronic wasting disease (CWD) by contact with infected farmed or free-ranging cervids. The purpose of this study was to assess the potential transmission of CWD from elk to cattle after intracranial inoculation, the most direct route to test the potential of a host to replicate an isolate of the prion agent. This study reports that only 2 of 14 calves inoculated with CWD from elk had clinical signs or evidence of abnormal prion protein accumulation. These results suggest that cattle are unlikely to be susceptible to CWD if inoculated by a more natural route. This information could have an impact on regulatory officials developing plans to reduce or eliminate TSEs and farmers with concerns about ranging cattle on areas where CWD may be present.

Technical Abstract:

***Cattle could be exposed to the agent of chronic wasting disease (CWD) through contact with infected farmed or free-ranging cervids or exposure to contaminated premises. The purpose of this study was to assess the potential for CWD derived from elk to transmit to cattle after intracranial inoculation. Calves (n=14) were inoculated with brain homogenate derived from elk with CWD to determine the potential for transmission and define the clinicopathologic features of disease.

Cattle were necropsied if clinical signs occurred or at the termination of experiment (49 months post-inoculation (MPI)).

Clinical signs of poor appetite, weight loss, circling, and bruxism occurred in two cattle (14%) at 16 and 17 MPI, respectively.

Accumulation of abnormal prion protein (PrP**Sc) in these cattle was confined to the central nervous system with the most prominent immunoreactivity in midbrain, brainstem, and hippocampus with lesser immunoreactivity in the cervical spinal cord.

*** The rate of transmission was lower than in cattle inoculated with CWD derived from mule deer (38%) or white-tailed deer (86%).

Additional studies are required to fully assess the potential for cattle to develop CWD through a more natural route of exposure, but a low rate of transmission after intracranial inoculation suggests that risk of transmission through other routes is low.

***A critical finding here is that if CWD did transmit to exposed cattle, currently used diagnostic techniques would detect and differentiate it from other prion diseases in cattle based on absence of spongiform change, distinct pattern of PrP**Sc deposition, and unique molecular profile.


Monday, April 04, 2016

*** Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle ***


Sunday, January 22, 2012

Chronic Wasting Disease CWD cervids interspecies transmission



Monday, January 09, 2017

Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle CDC Volume 23, Number 2—February 2017


MONDAY, JANUARY 16, 2017

APHIS Bovine Spongiform Encephalopathy (BSE): Ongoing Surveillance Program Last Modified: Jan 5, 2017


SUNDAY, JANUARY 15, 2017

US lifts French beef MAD COW BSE import embargo, France says… LOL!


Wednesday, December 21, 2016

TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES 2016 ANNUAL REPORT ARS RESEARCH



Monday, January 2, 2017

Bovine Spongiform Encephalopathy Induces Misfolding of Alleged Prion-Resistant Species Cellular Prion Protein without Altering Its Pathobiological Features

Articles, Neurobiology of Disease


Thursday, December 08, 2016

USDA APHIS National Scrapie Eradication Program October 2016 Monthly Report Fiscal Year 2017 atypical NOR-98 Scrapie



SATURDAY, JANUARY 14, 2017

CHRONIC WASTING DISEASE CWD TSE PRION GLOBAL UPDATE JANUARY 14, 2017


***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.

P.86: Estimating the risk of transmission of BSE and scrapie to ruminants and humans by protein misfolding cyclic amplification

Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi Murayama

National Institute of Animal Health; Tsukuba, Japan

To assess the risk of the transmission of ruminant prions to ruminants and humans at the molecular level, we investigated the ability of abnormal prion protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding cyclic amplification (PMCA).

Six rounds of serial PMCA was performed using 10% brain homogenates from transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc seed from typical and atypical BSE- or typical scrapie-infected brain homogenates from native host species. In the conventional PMCA, the conversion of PrPC to PrPres was observed only when the species of PrPC source and PrPSc seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested prion strains. On the other hand, human PrPC was converted by PrPSc from typical and H-type BSE in this PMCA condition.

Although these results were not compatible with the previous reports describing the lack of transmissibility of H-type BSE to ovine and human transgenic mice, our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.


P.170: Potential detection of oral transmission of H type atypical BSE in cattle using in vitro conversion

***P.170: Potential detection of oral transmission of H type atypical BSE in cattle using in vitro conversion

Sandor Dudas, John G Gray, Renee Clark, and Stefanie Czub Canadian Food Inspection Agency; Lethbridge, AB Canada

Keywords: Atypical BSE, oral transmission, RT-QuIC

The detection of bovine spongiform encephalopathy (BSE) has had a significant negative impact on the cattle industry worldwide. In response, governments took actions to prevent transmission and additional threats to animal health and food safety. While these measures seem to be effective for controlling classical BSE, the more recently discovered atypical BSE has presented a new challenge. To generate data for risk assessment and control measures, we have challenged cattle orally with atypical BSE to determine transmissibility and mis-folded prion (PrPSc) tissue distribution. Upon presentation of clinical symptoms, animals were euthanized and tested for characteristic histopathological changes as well as PrPSc deposition.

The H-type challenged animal displayed vacuolation exclusively in rostral brain areas but the L-type challenged animal showed no evidence thereof. To our surprise, neither of the animals euthanized, which were displaying clinical signs indicative of BSE, showed conclusive mis-folded prion accumulation in the brain or gut using standard molecular or immunohistochemical assays. To confirm presence or absence of prion infectivity, we employed an optimized real-time quaking induced conversion (RT-QuIC) assay developed at the Rocky Mountain Laboratory, Hamilton, USA.

Detection of PrPSc was unsuccessful for brain samples tests from the orally inoculated L type animal using the RT-QuIC. It is possible that these negative results were related to the tissue sampling locations or that type specific optimization is needed to detect PrPSc in this animal. We were however able to consistently detect the presence of mis-folded prions in the brain of the H-type inoculated animal. Considering the negative and inconclusive results with other PrPSc detection methods, positive results using the optimized RT-QuIC suggests the method is extremely sensitive for H-type BSE detection. This may be evidence of the first successful oral transmission of H type atypical BSE in cattle and additional investigation of samples from these animals are ongoing.




Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle

Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.

snip...

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...




In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells

3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. ...


The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province! ...page 26.


*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.



SPONTANEOUS ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***


Primate Biol., 3, 47–50, 2016 www.primate-biol.net/3/47/2016/ doi:10.5194/pb-3-47-2016 © Author(s) 2016. CC

Attribution 3.0 License.

Prions

Walter Bodemer German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany Correspondence to: Walter Bodemer (wbodemer@dpz.eu)

Received: 15 June 2016 – Revised: 24 August 2016 – Accepted: 30 August 2016 – Published: 7 September 2016

SNIP...

 3 Conclusion

Most importantly, early signs of an altered circadian rhythm, sleep–wake cycle, and activity and body temperature were recorded in prion-infected animals. This experimental approach would have never been feasible in studies with human CJD cases. After 4–6 years animals developed clinical symptoms highly similar to those typical for CJD. Clinicians confirmed how close the animal model and the human disease matched. Non-neuronal tissue like cardiac muscle and peripheral blood with abnormal, disease-related prion protein were detected in rhesus monkey tissues.

Molecular changes in RNA from repetitive Alu and BC200 DNA elements were identified and found to be targets of epigenetic editing mechanisms active in prion disease. To conclude, our results with the rhesus monkey model for prion disease proved to be a valid model and increased our knowledge of pathogenic processes that are distinctive to prion disease.

 SEE FULL TEXT ;


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations

 Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France

 Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.

 *** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,

 ***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),

 ***is the third potentially zoonotic PD (with BSE and L-type BSE),

 ***thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.

 ===============

***thus questioning the origin of human sporadic cases***

 ***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.


Saturday, April 23, 2016

PRION 2016 TOKYO

Saturday, April 23, 2016

 SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

 Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

 Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

 To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

 Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with ef?ciency comparable to that of cattle BSE. While the ef?ciency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.


why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 snip...

 R. BRADLEY


Title: Transmission of scrapie prions to primate after an extended silent incubation period)         

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.

 *** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.

 *** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.


SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online



Tuesday, July 21, 2009

Transmissible mink encephalopathy - review of the etiology


Saturday, December 01, 2007

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model


Sunday, December 10, 2006

Transmissible Mink Encephalopathy TME



Saturday, June 25, 2011

Transmissibility of BSE-L and Cattle-Adapted TME Prion Strain to Cynomolgus Macaque

"BSE-L in North America may have existed for decades"


Wednesday, April 25, 2012

4th MAD COW DISEASE U.S.A. CALIFORNIA ATYPICAL L-TYPE BSE 2012


Thursday, October 22, 2015

Former Ag Secretary Ann Veneman talks women in agriculture and we talk mad cow disease USDA and what really happened


Thursday, July 24, 2014

Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE SCIENTIFIC REPORT OF EFSA


Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan.

*** This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada.

*** It also suggests a similar cause or source for atypical BSE in these countries. ***

see page 176 of 201 pages...tss


*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;


Wednesday, July 15, 2015

Additional BSE TSE prion testing detects pathologic lesion in unusual brain location and PrPsc by PMCA only, how many cases have we missed?


***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

Posted by Terry S. Singeltary Sr. on 03 Jul 2015 at 16:53 GMT


Creutzfeldt Jakob Disease CJD


Diagnosis and Reporting of Creutzfeldt-Jakob Disease

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

Terry S. Singeltary, Sr Bacliff, Tex

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.



with very sad but kindest regards, terry

No comments: