Monday, January 24, 2022

Absence of classical and atypical (H- and L-) BSE infectivity in the blood of bovines in the clinical end stage of disease as confirmed by intraspecies blood transfusion

Absence of classical and atypical (H- and L-) BSE infectivity in the blood of bovines in the clinical end stage of disease as confirmed by intraspecies blood transfusion

Anne Balkema-Buschmann1, *, Ute Ziegler1 , Grit Priemer1 , Kerstin Tauscher1 , Frauke Köster1 , Ivett Ackermann1 , Olanrewaju I. Fatola1 , Daniel Balkema1 , Jan Schinköthe2 , Bärbel Hammerschmidt2 , Christine Fast1 , Reiner Ulrich2,3 and Martin H. Groschup1

RESEARCH ARTICLE

Balkema-Buschmann et al., Journal of General Virology 2021;102:001460 DOI 10.1099/jgv.0.001460

Received 02 August 2019; Accepted 02 June 2020; Published 26 June 2020

Author affiliations: 1 Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany; 2 FriedrichLoeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany; 3 Institute of Veterinary

Pathology, Leipzig University, Leipzig, Germany.

*Correspondence: Anne Balkema-Buschmann, anne.buschmann@fli.de

Keywords: blood transfusion; BSE; BSE infectivity; cattle; medicinal products.

Abbreviations: BSE, Bovine Spongiform Encephalopathy; C-BSE, classical BSE; CJD, Creutzfeldt-Jakob disease; CWD, Chronic Wasting Disease; H-BSE, atypical BSE with higher MW of unglycosylated PrPC; L-BSE, atypical BSE with lower MW of unglycosylated PrPC; PMCA, Protein Misfolding Cyclic Amplification; TSE, Transmissible Spongiform Encephalopathy.

One supplementary table and figure are available with the online version of this article. 001460 © 2021 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.

Abstract

While the presence of bovine spongiform encephalopathy (BSE) infectivity in the blood of clinically affected sheep has been proven by intraspecies blood-transfusion experiments, this question has remained open in the case of BSE-affected cattle. Although the absence of infectivity can be anticipated from the restriction of the agent to neuronal tissues in this species, evidence for this was still lacking. This particularly concerns the production and use of medicinal products and other applications containing bovine blood or preparations thereof. We therefore performed a blood-transfusion experiment from cattle in the clinical end stage of disease after experimental challenge with either classical (C-BSE) or atypical (H- and l-) BSE into calves at 4–6months of age. The animals were kept in a free-ranging group for 10years. Starting from 24months post-transfusion, a thorough clinical examination was performed every 6weeks in order to detect early symptoms of a BSE infection. Throughout the experiment, the clinical picture of all animals gave no indication of a BSE infection. Upon necropsy, the brainstem samples were analysed by BSE rapid test as well as by the highly sensitive Protein Misfolding Cyclic Amplification (PMCA), all with negative results. These results add resilient data to confirm the absence of BSE infectivity in the donor blood collected from C-, H- and l-BSE-affected cattle even in the final clinical phase of the disease. This finding has important implications for the risk assessment of bovine blood and blood products in the production of medicinal products and other preparations.

snip...

Taken together, these results add important information enabling a reassessment of the BSE contamination risk of bovine blood and blood products used for the production of medicinal products and other preparations. According to current regulations, bovine blood products should always be retrieved from countries with a negligible BSE risk, and the traceability, geographical origin, the age of the donor animals, the used stunning method, as well as the possible reduction of TSE agents during manufacture need to be taken into consideration during the risk assessment of the intended product. This makes the production, approval and commercialization of bovine blood products, medicinal products or other preparations containing bovine blood products (including fetal or newborn calf serum widely used in cell culture work) extremely costly and inefficient. In light of the results presented here, lightening these strict regulations should be considered for the preparation of bovine blood and blood products, as the level of BSE infectivity in blood products of cattle in the clinical end stage of disease is either below the detection limit of our tests (atypical BSE), or, according to present knowledge, is completely absent (C-BSE).


GOOD news for the cattle industry for a change, with reference to the BSE TSE PrP and blood risk factors from this study. 

i remember raising this question to the infamous 50 state BSE emergency conference call way back;

[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001


However, not so good for the Cervid industry with relations to blood and transmission risk factors of cervid with cwd tse prp;

Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: Successful transmission of the chronic wasting disease (CWD) agent to white-tailed deer by intravenous blood transfusion

Author item MAMMADOVA, NAJIBA - Orise Fellow item CASSMAN, ERIC - Orise Fellow item Greenlee, Justin

Submitted to: Research in Veterinary Science

Publication Type: Peer Reviewed Journal

Publication Acceptance Date: 10/14/2020

Publication Date: 12/20/2020

Citation: Mammadova, N., Cassman, E., Greenlee, J.J. 2020. Successful transmission of the chronic wasting disease (CWD) agent to white-tailed deer by intravenous blood transfusion. Research in Veterinary Science. 133:304-306. https://doi.org/10.1016/j.rvsc.2020.10.009.

DOI: https://doi.org/10.1016/j.rvsc.2020.10.009

Interpretive Summary: Chronic wasting disease (CWD) is a fatal disease of cervids that causes damaging changes in the brain. The infectious agent is an abnormal protein called a prion that has misfolded from its normal state. Chronic wasting disease may be transmitted from ingestion of prions shed in bodily fluids (e.g. feces, urine, saliva, placenta tissue) of infected animals. Few studies have also reported detection of infectious prions in blood. To determine if CWD-infected blood can transmit prion disease, recipient deer were inoculated intravenously (IV) with blood derived from a CWD-infected white-tailed deer. We found that two out of three animals developed disease. This study complements and supports an earlier finding that CWD can be transmitted to deer by intravenous blood transfusion from white-tailed deer with CWD. This information is useful to wildlife and agricultural officials that are involved in efforts to control the spread of chronic wasting disease.

Technical Abstract: Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSEs) that affects free-ranging and captive cervid species. The infectious agent of CWD may be transmitted from ingestion of prions shed in bodily fluids (e.g. feces, urine, saliva, placenta tissue) of infected animals, contaminated pastures, and/or decomposing carcasses from dead animals. Studies have also demonstrated prion infectivity in whole blood or blood fractions of CWD infected animals. To determine if CWD-infected blood contained sufficient levels of prion infectivity to cause disease, recipient deer were inoculated intravenously (IV) with blood derived from a CWD-infected white-tailed deer. We found that the CWD agent can be successfully transmitted to white-tailed deer by a single intravenous blood transfusion with a mean incubation period of approximately 35 months and an attack rate of 100%. This study complements and supports an earlier finding that CWD can be transmitted to deer by intravenous blood transfusion from white-tailed deer with CWD.


Successful transmission of the chronic wasting disease (CWD) agent to white-tailed deer by intravenous blood transfusion 

Najiba Mammadovaa,b, Eric Cassmanna,b, Justin J. Greenleea,* aVirus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA bOak Ridge Institute for Science and Education (ORISE), USA ARTICLE INFO 

Keywords: Blood transfusion Cervid CWD Prion disease Prions in blood White-tailed deer 

ABSTRACT 

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSEs) that affects free-ranging and captive cervid species. The infectious agent of CWD may be transmitted from ingestion of prions shed in bodily fluids (e.g. feces, urine, saliva, placenta tissue) of infected animals, contaminated pastures, and/or decomposing carcasses from dead animals. Studies have also demonstrated prion infectivity in whole blood or blood fractions of CWD infected animals. To determine if CWD-infected blood contained sufficient levels of prion infectivity to cause disease, recipient deer were inoculated intravenously (IV) with blood derived from a CWD- infected white-tailed deer. We found that the CWD agent can be successfully transmitted to white-tailed deer by a single intravenous blood transfusion. The incubation period was associated with recipient prion protein genotype at codon 96 with the GG96 recipient incubating for 25.6 months and the GS96 recipient incubating for 43.6 months. This study complements and supports an earlier finding that CWD can be transmitted to deer by intravenous blood transfusion from white-tailed deer with CWD. 

Chronic wasting disease (CWD) is a naturally occurring transmissible spongiform encephalopathy (TSEs) of cervids. Other TSEs include scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and sporadic and familial Creutzfeldt-Jakob disease (CJD) in humans. The CWD agent has a wide host range among various species of free- ranging and captive cervids, including mule deer (Odocoileus hemi-onus) (Williams & Young, 1980; Spraker et al., 1997; Miller & Wild, 2004), white-tailed deer (Odocoileus virginianus) (Spraker et al., 1997; Miller & Wild, 2004), Rocky Mountain elk (Cervus elaphus nelsoni) (Williams & Young, 1982), moose (Alces alces shirasi) (Baeten et al., 2007; Kreeger et al., 2006), and reindeer (Rangifer tarandus tarandus) (Benestad et al., 2016; Moore et al., 2016). The infectious agent of CWD may be transmitted from ingestion of prions shed in bodily fluids (e.g. feces, urine, saliva) or placenta tissue of infected animals, contaminated pastures, and/or decomposing carcasses from dead animals (Haley et al., 2011; Haley et al., 2009; Mathiason et al., 2010; Mathiason et al., 2006). A limited number of reports have demonstrated prion infectivity in whole blood or blood fractions of CWD infected animals (Mathiason et al., 2010; Mathiason et al., 2006; Kramm et al., 2017). To determine if CWD-infected blood contained sufficient levels of prion infectivity to cause disease, recipient deer consisting of three female deer of approximately 2 years of age were inoculated intravenously (IV) with 100 mL of blood immediately after collection from a CWD-infected white-tailed deer (animal ID: 936). Deer 936 was a 21.8-month-old male white-tailed deer that was intracranially (IC) inoculated with 1 mL of a 10% (wt./vol) brain homogenate (derived from a pool of white- tailed deer brainstem material from Wisconsin) at 3 months of age. The procedure for IC inoculation of fawns has been described previously (Greenlee et al., 2011). Donor deer 936 presented with clinical signs of neurologic disease approximately ~17.8 months post inoculation at which time blood was collected by jugular venipuncture into 50 mL syringes containing 7 mL of citrate phosphate dextrose adenine solution anticoagulant (CPDA-1) that were immediately pooled and used as inoculum. Deer 936 was determined CWD positive based on accumu-lation of abnormal prion protein (PrPSc) by immunohistochemistry (IHC) in the brainstem at the level of the obex, the palatine tonsil, and the retropharyngeal lymph node (RLN). Recipient deer were initially housed in separate biosafety level 2 facilities following exposure to CWD. Non-inoculated control deer (n =3) were kept with the CWD-free herd on pasture at the National Animal Disease Center. All white-tailed deer (including donor animals) were genotyped and determined to be homozygous QQ at codons 95 and 226, but there were polymorphisms at codon 96. The donor deer (936) and two recipient deer (940, 942) were homozygous G at codon 96, and a single recipient deer (941) was het-erozygous GS at codon 96.

The animals were fed pelleted growth and maintenance rations that contained no ruminant protein, and clean water was available ad libi-tum. Deer were observed daily for the development of clinical signs of CWD (e.g., behavioral abnormalities, excess salivation, and emaciation) and were euthanized at the onset of unequivocal clinical signs of disease, or at the end of the observation period. At necropsy, duplicate tissue samples were collected and either frozen or stored in 10% buffered neutral formalin. For detection of PrPSc, slides were stained by an automated immunohistochemistry (IHC) method using primary anti-body F99/F96.7.1, described previously (Greenlee et al., 2012; Greenlee et al., 2006). 

At the completion of the study, two of the three IV inoculated deer were determined CWD positive. The two positive deer presented with clinical signs and were euthanized at 25.6- and 43.6-months post inoculation. These deer had detectable pathogenic prion protein (PrPSc) in the CNS and various non-CNS tissues (lymphoid tissues comprised of retropharyngeal lymph node (RPLN), tonsils (palatine and pharyngeal), spleen, recto-anal mucosa-associated lymphoid tissue (RAMALT), gut- associated lymphoid tissue (GALT) of the small intestines, and the enteric nervous system (Table 1). Deer #942 was euthanized 2.9 months post inoculation due to intercurrent disease, and no PrPSc was detectable by IHC, although it’s probable that this deer would have developed CWD given a longer duration of incubation. 

This study complements and reinforces earlier findings that CWD can be transmitted to deer by intravenous blood transfusion from white- tailed deer with CWD (Mathiason et al., 2010; Mathiason et al., 2006). In a previous study, a group of eight, 6-month-old fawns were IV inoculated with ~250 mL of whole blood derived from experimentally IC inoculated CWD positive white-tailed deer (Mathiason et al., 2010). In this study, all eight deer were determined to be CWD positive by IHC of all relevant tissues, and began to show clinical signs of TSE between 15 and 26 months post inoculation (Mathiason et al., 2010). While similar results were obtained in our study, we determined that only 100 mL of CWD-infected blood contained sufficient levels of prion infectivity to cause disease compared to the 250 mL of whole blood used by Mathiason et al. (Mathiason et al., 2010). In an earlier study, a cohort of three 6-month-old white-tailed deer fawns were exposed to the agent of CWD via either a single intraperitoneal (IP) inoculation (n =2) or an IV transfusion (n =1) of blood derived from a naturally infected CWD positive mule deer (Mathiason et al., 2006). Similar to our findings, the fawn that received blood via IV transfusion had detectable PrPSc in the CNS (medulla at the level of the obex), tonsil, and retropharyngeal lymph nodes (Mathiason et al., 2006); however, it did not present with clinical signs and was euthanized 18 months post inoculation (Mathia-son et al., 2006). 

We demonstrate here that the CWD agent can be successfully transmitted to white-tailed deer by a single intravenous blood trans-fusion from CWD-infected white-tailed deer. The incubation period appeared to be associated with recipient genotype with the GG96 deer (940) incubating for 25.6 months, while the GS96 deer (941) incubated for 43.6 months; however, we take into consideration the limitation of the small sample size in this study. While a previous and larger study showed similar results, we determined that only 100 mL of CWD- infected blood (~2.5 times less than previously shown in (Mathiason et al., 2010)) contained sufficient levels of prion infectivity to cause disease. The identification of blood-borne transmission of the CWD agent is important in reinforcing the risk of exposure to CWD via blood as well as the possibility of hematogenous transmission of the CWD agent through insect vector. Finally, these results further highlight the importance of developing a sensitive and reproducible blood-based test to detect pre-clinical CWD, and warrant the continued advancement and evaluation of sensitive antemortem diagnostic tests for the detection of PrPSc in blood of asymptomatic cervids early in the incubation period.

We demonstrate here that the CWD agent can be successfully transmitted to white-tailed deer by a single intravenous blood trans-fusion from CWD-infected white-tailed deer. The incubation period appeared to be associated with recipient genotype with the GG96 deer (940) incubating for 25.6 months, while the GS96 deer (941) incubated for 43.6 months; however, we take into consideration the limitation of the small sample size in this study. While a previous and larger study showed similar results, we determined that only 100 mL of CWD- infected blood (~2.5 times less than previously shown in (Mathiason et al., 2010)) contained sufficient levels of prion infectivity to cause disease. The identification of blood-borne transmission of the CWD agent is important in reinforcing the risk of exposure to CWD via blood as well as the possibility of hematogenous transmission of the CWD agent through insect vector. Finally, these results further highlight the importance of developing a sensitive and reproducible blood-based test to detect pre-clinical CWD, and warrant the continued advancement and evaluation of sensitive antemortem diagnostic tests for the detection of PrPSc in blood of asymptomatic cervids early in the incubation period. 

Funding This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE- SC0014664. All opinions expressed in this paper are the author’s and do not necessarily reflect the policies and views of USDA, ARS, DOE, or ORAU/ORISE. This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection and analysis, decision to publish, or the preparation of the manuscript.



MONDAY, NOVEMBER 02, 2020 

Successful transmission of the chronic wasting disease (CWD) agent to white-tailed deer by intravenous blood transfusion 


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. ***These circumstances represent a potential threat to blood, blood products, and plasma supplies.


8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no inal conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.


Thursday, October 28, 2021 

Chronic Wasting Disease (CWD) TSE Prion Zoonosis, friendly fire, iatrogenic transmission, blood products, sporadic CJD, what if?


Thursday, July 29, 2021 

TSE PRION OCCUPATIONAL EXPOSURE VIA ANIMAL OR HUMAN, iatrogenic transmission, nvCJD or sCJD, what if? 


2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

PLEASE NOTE;

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strainsNo

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE. 


MONDAY, NOVEMBER 29, 2021 

Experimental Oronasal Transmission of Chronic Wasting Disease Agent from White-Tailed Deer to Suffolk Sheep Volume 27, Number 12—December 2021 Dispatch


OIE Conclusions on transmissibility of atypical BSE among cattle

Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided. 


Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019

34 Scientific Commission/September 2019

3. Atypical BSE

The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.

The Group acknowledged the challenges in demonstrating the zoonotic transmission of atypical strains of BSE in natural exposure scenarios. Overall, the Group was of the opinion that, at this stage, it would be premature to reach a conclusion other than that atypical BSE poses a potential zoonotic risk that may be different between atypical strains.

4. Definitions of meat-and-bone meal (MBM) and greaves

snip...

REFERENCES

SNIP...END SEE FULL TEXT;


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


Atypical L-type BSE
Emerg Infect Dis. 2017 Feb; 23(2): 284–287. doi: 10.3201/eid2302.161416 PMCID: PMC5324790 PMID: 28098532
Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle 
Our study clearly confirms, experimentally, the potential risk for interspecies oral transmission of the agent of L-BSE. In our model, this risk appears higher than that for the agent of classical BSE, which could only be transmitted to mouse lemurs after a first passage in macaques (14). We report oral transmission of the L-BSE agent in young and adult primates. Transmission by the IC route has also been reported in young macaques (6,7). A previous study of L-BSE in transgenic mice expressing human PrP suggested an absence of any transmission barrier between cattle and humans for this particular strain of the agent of BSE, in contrast to findings for the agent of classical BSE (9). Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.
Atypical H-type BSE
Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research
Title: The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge
This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 
These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.
P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 
Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 
With the experiment currently at 55 months post-inoculation, no other cattle in this study have developed clinical signs suggestive of prion disease. This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 
These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains. 
PRION CONFERENCE 2018 CONFERENCE ABSTRACT
Published: 23 June 2011
Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits
The present study demonstrated successful intraspecies transmission of H-type BSE to cattle and the distribution and immunolabeling patterns of PrPSc in the brain of the H-type BSE-challenged cattle. TSE agent virulence can be minimally defined by oral transmission of different TSE agents (C-type, L-type, and H-type BSE agents) [59]. Oral transmission studies with H-type BSE-infected cattle have been initiated and are underway to provide information regarding the extent of similarity in the immunohistochemical and molecular features before and after transmission. In addition, the present data will support risk assessments in some peripheral tissues derived from cattle affected with H-type BSE.
References...END

223. Scrapie in white-tailed deer: a strain of the CWD agent that efficiently transmits to sheep?

Justin J. Greenleea, Robyn D. Kokemullera, S. Jo Moorea and Heather West Greenleeb

aVirus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA; bDepartment of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA

CONTACT Justin J. Greenlee Justin.Greenlee@ars.usda.gov

ABSTRACT

Scrapie is a transmissible spongiform encephalopathy of sheep and goats that is associated with widespread accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the natural prion disease of cervid species, and the tissue distribution of PrPSc in affected cervids is similar to scrapie in sheep. There are several lines of evidence that suggest that multiple strains of CWD exist, which may affect the agent’s potential to transmit to hosts of the same or different species. We inoculated white-tailed deer with the scrapie agent from ARQ/ARQ sheep, which resulted in 100% attack rates by either the intracranial or oronasal route of inoculation. When examining tissues from the brainstems or lymphoid tissues by traditional diagnostic methods such as immunohistochemistry or western blots, it is difficult to differentiate tissues from deer infected with scrapie from those infected with CWD. However, there are several important differences between tissues from scrapie-infected white-tailed deer (WTD scrapie) and those infected with CWD (WTD CWD). First, there are different patterns of PrPSc deposition in the brains of infected deer: brain tissues from deer with WTD scrapie had predominantly particulate and stellate immunoreactivity whereas those from deer with WTD-CWD had large aggregates and plaque-like deposits. Secondly, the incubation periods of WTD scrapie isolates are longer than CWD isolates in mice expressing cervid prion protein. Most notably, the transmission potential of these two isolates back to sheep is distinctly different. Attempts to transmit various CWD isolates to sheep by the oral or oronasal routes have been unsuccessful despite observation periods of up to 7 years. However, WTD scrapie efficiently transmitted back to sheep by the oronasal route. Upon transmission back to sheep, the WTD scrapie isolate exhibited different phenotypic properties when compared to the sheep receiving the original sheep scrapie inoculum including different genotype susceptibilities, distinct PrPSc deposition patterns, and much more rapid incubation periods in transgenic mice expressing the ovine prion protein. The scrapie agent readily transmits between sheep and deer after oronasal exposure. This could confound the identification of CWD strains in deer and the eradication of scrapie from sheep.


CONFIDENTIAL

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

LINE TO TAKE

3. If questions on pharmaceuticals are raised at the Press conference, the suggested line to take is as follows:- 

 "There are no medicinal products licensed for use on the market which make use of UK-derived porcine tissues with which any hypothetical “high risk" ‘might be associated. The results of the recent experimental work at the CSM will be carefully examined by the CSM‘s Working Group on spongiform encephalopathy at its next meeting.

DO Hagger RM 1533 MT Ext 3201


While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...


we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.


May I, at the outset, reiterate that we should avoid dissemination of papers relating to this experimental finding to prevent premature release of the information. ...


3. It is particularly important that this information is not passed outside the Department, until Ministers have decided how they wish it to be handled. ...


But it would be easier for us if pharmaceuticals/devices are not directly mentioned at all. ...


Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).


WEDNESDAY, JANUARY 12, 2022 

Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA, what if?


MONDAY, DECEMBER 27, 2021 

RT-QuIC detection of pathological prion protein in subclinical goats following experimental oral transmission of L-type BSE


FRIDAY, DECEMBER 10, 2021 

Scrapie at Abattoir: Monitoring, Control, and Differential Diagnosis of Wasting Conditions during Meat Inspection 


TUESDAY, SEPTEMBER 07, 2021

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom

Sunday, January 10, 2021 
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ... 






Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission



Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification


Terry S. Singeltary Sr.