Bovine spongiform encephalopathy ,United Kingdom
Information received on 19/10/2018 from Dr Christine Middlemiss, Chief Veterinary Officer, DEFRA, Department for Environment,Food and Rural Affairs , London, United Kingdom
Summary
Report type
|
Immediate notification (Final report)
|
Date of start of the event
|
02/10/2018
|
Date of confirmation of the event
|
18/10/2018
|
Report date
|
19/10/2018
|
Date submitted to OIE
|
19/10/2018
|
Date event resolved
|
22/10/2018
|
Reason for notification
|
Recurrence of a listed disease
|
Date of previous occurrence
|
2015
|
Manifestation of disease
|
Clinical disease
|
Causal agent
|
Prion (classical C-type BSE)
|
Nature of diagnosis
|
Laboratory (advanced)
|
This event pertains to
|
a defined zone within the country
|
New outbreaks
Summary of outbreaks
|
Total outbreaks: 1
| ||||||||||||
Outbreak Location
|
| ||||||||||||
Total animals affected
|
| ||||||||||||
Outbreak statistics
|
* Removed from the susceptible population through death, destruction and/or slaughter; |
Epidemiology
Source of the outbreak(s) or origin of infection
| |
Epidemiological comments
|
A full epidemiological investigation is being carried out to identify evidence of routes of infection. This will be made available on gov.uk in due curse.
UK remains vigilant to the threat posed by BSE and the following key controls, that protect public and animal health remain in force: -the ban on feeding animal protein to farmed animals, which prevents the spread of BSE to animals through feed -removing specified risk material (SRM) at slaughter to protect consumers -surveillance to monitor the level of BSE over time and thereby check on the continued effectiveness of BSE controls. |
Control measures
Measures applied
|
|
Measures to be applied
|
|
Diagnostic test results
Laboratory name and type
|
Animal & Plant Health Agency laboratory Weybridge ( OIE Reference Laboratory )
| ||||||||
Tests and results
|
|
Future Reporting
The event is resolved. No more reports will be submitted.
|
Encéphalopathie spongiforme bovine ,Royaume-Uni
Information reçue le 19/10/2018 de Dr Christine Middlemiss, Chief Veterinary Officer, DEFRA, Department for Environment,Food and Rural Affairs , London, Royaume-Uni
Résumé
Type de rapport
|
Notification immédiate (rapport final)
|
Date de début de lévénement
|
02/10/2018
|
Date de confirmation de l´événement
|
18/10/2018
|
Date du rapport
|
19/10/2018
|
Date d'envoi à l'OIE
|
19/10/2018
|
Date de clôture de l'événement
|
22/10/2018
|
Raison de notification
|
Réapparition dune maladie listée par l'OIE
|
Date de la précédente apparition de la maladie
|
2015
|
Manifestation de la maladie
|
Maladie clinique
|
Agent causal
|
Prion (ESB classique de type C)
|
Nature du diagnostic
|
Tests approfondis en laboratoire (i.e. virologie, microscopie électronique, biologie moléculaire, immunologie)
|
Cet événement se rapporte à
|
une zone définie à l'intérieur du pays
|
Nouveaux foyers
Récapitulatif des foyers
|
Nombre total de foyers : 1
| ||||||||||||
Localisation du foyer
|
| ||||||||||||
Nombre total d'animaux atteints
|
| ||||||||||||
Statistiques sur le foyer
|
* Soustraits de la population sensible suite à la mort, à l´abattage et/ou à la destruction; |
Epidémiologie
Source du/des foyer(s) ou origine de l´infection
| |
Autres renseignements épidémiologiques / Commentaires
|
Une enquête épidémiologique exhaustive est en cours afin didentifier une preuve des voies de transmission de linfection. Cette enquête sera rendue publique sur le site web gov.uk en temps opportun.
Le Royaume-Uni reste vigilant à la menace que représente lESB et les contrôles clés ci-après, qui assurent la protection sanitaire publique et vétérinaire, sont maintenus en vigueur : - linterdiction de nourrir des animaux délevage avec des protéines animales, ce qui empêche la propagation de lESB aux animaux via lalimentation, - le retrait des matériels à risques spécifiés lors de labattage pour protéger les consommateurs, et - la surveillance du niveau de présence de lESB dans le temps et donc de lefficacité continue des contrôles de lESB. |
Mesures de lutte
Mesures de lutte appliquées
|
|
Mesures à appliquer
|
|
Résultats des tests de diagnostics
Nom du laboratoire et type
|
Laboratoire de l'Agence vétérinaire et phytosanitaire de Weybridge ( Laboratoire de référence de lOIE )
| ||||||||
Tests et résultats
|
|
Rapports futurs
Lévénement est terminé. Aucun autre rapport ne sera envoyé.
|
Encefalopatía espongiforme bovina ,Reino Unido
Información recibida el 19/10/2018 desde Dr Christine Middlemiss, Chief Veterinary Officer, DEFRA, Department for Environment,Food and Rural Affairs , London, Reino Unido
Resumen
Tipo de informe
|
Notificación inmediata(Informe final)
|
Fecha del inicio del evento
|
02/10/2018
|
Fecha de confirmación del evento
|
18/10/2018
|
Fecha del informe
|
19/10/2018
|
Fecha de envio del informe a la OIE
|
19/10/2018
|
Fecha del cierre del evento
|
22/10/2018
|
Motivo de la notificación
|
Recurrencia de una enfermedad de la Lista de la OIE
|
Fecha de la anterior aparición de la enfermedad
|
2015
|
Manifestación de la enfermedad
|
Enfermedad clínica
|
Agente causal
|
Prión (EEB clásica de tipo C)
|
Naturaleza del diagnóstico
|
Pruebas de diagnóstico de laboratorio avanzadas (ej. virología, microscopía electrónica, biología molecular e inmunología)
|
Este evento concierne
|
una zona definida dentro del país
|
Nuevos focos
Resumen de los focos
|
Número total de focos: 1
| ||||||||||||
Localización del foco
|
| ||||||||||||
Número total de animales afectados
|
| ||||||||||||
Estadística del foco
|
* Descontados de la población susceptible a raíz de su muerte, destrucción o sacrificio; |
Epidemiología
Fuente del o de los focos u origen de la infección
| |
Otros detalles epidemiológicos / comentarios
|
Se está realizando una investigación epidemiológica completa para identificar las vías de infección. La información se incluirá en el sitio gov.uk a su debido tiempo.
El Reino Unido sigue atento al riesgo que plantea la EEB y los siguientes controles clave, que protegen la salud pública y animal, siguen en vigor: - la prohibición de alimentar con proteína animal a animales de granja, lo que evita la propagación de la EEB a los animales a través de la alimentación, - eliminar en el sacrificio el material de riesgo especificado para proteger a los consumidores, - la vigilancia para seguir el nivel de EEB a través del tiempo y verificar por consiguiente la eficacia continua de los controles contra la EEB. |
Medidas de Control
Medidas implementadas
|
|
Medidas para implementar
|
|
Resultados de las pruebas diagnósticas
Nombre y tipo de laboratorio
|
Laboratorio de la Agencia veterinaria y fitosanitaria de Weybridge ( Laboratorio de referencia de la OIE )
| ||||||||
Pruebas y resultados
|
|
Informes futuros
El episodio ha sido resuelto. Ningún otro informe será enviado
|
http://www.oie.int/wahis_2/temp/reports/en_imm_0000028331_20181022_192643.pdf
BSE Part of: Farming and rural Food and drink Disease confirmed in Aberdeenshire.
A case of Bovine Spongiform Encephalopathy (BSE) has been confirmed on a farm in Aberdeenshire.
In line with the disease prevention response plan, precautionary movement restrictions have been put in place at the farm, while further investigations to identify the origin of the disease occur.
This is standard procedure for a confirmed case of classical BSE, which does not represent a threat to human health.
Rural Economy Secretary Fergus Ewing said:
“Following confirmation of a case of classical BSE in Aberdeenshire, I have activated the Scottish Government’s response plan to protect our valuable farming industry, including establishing a precautionary movement ban being placed on the farm.
“While it is important to stress that this is standard procedure until we have a clear understanding of the diseases origin, this is further proof that our surveillance system for detecting this type of disease is working. Be assured that the Scottish Government and its partners stand ready to respond to any further confirmed cases of the disease in Scotland.”
Chief Veterinary Officer Sheila Voas said:
“While it is too early to tell where the disease came from in this case, its detection is proof that our surveillance system is doing its job. We are working closely with the Animal and Plant Health Agency to answer this question, and in the meantime, I would urge any farmer who has concerns to immediately seek veterinary advice.
Ian McWatt, Director of Operations in Food Standards Scotland said:
“There are strict controls in place to protect consumers from the risk of BSE, including controls on animal feed, and removal of the parts of cattle most likely to carry BSE infectivity.
“Consumers can be reassured that these important protection measures remain in place and that Food Standards Scotland Official Veterinarians and Meat Hygiene Inspectors working in all abattoirs in Scotland will continue to ensure that in respect of BSE controls, the safety of consumers remains a priority. We will continue to work closely with Scottish Government, other agencies and industry at this time.”
Background
The Animal Health Agency (APHA) is investigating the source of the outbreak.
The case was identified as a result of strict control measures we have in place. It did not enter the human food chain and Food Standards Scotland have confirmed there is no risk to human health as a result of this isolated case.
All animals over four years of age that die on farm are routinely tested for BSE under our comprehensive surveillance system. Whilst the disease is not directly transmitted from animal to animal, its cohorts, including offspring, have been traced and isolated, and will be destroyed in line with EU requirements.
In addition to the measures we have in place for fallen stock and animal feed, there is a strict control regime to protect consumers. This includes the removal of specified risk material such as the spinal column, brain and skull from carcasses.
Extra View
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
============== https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion.. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEYhttps://web.archive.org/web/20170126051158/http://collections.europarchive.org/tna/20080102222950/http://www.bseinquiry.gov.uk/files/yb/1990/09/23001001.pdf
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160
zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm
***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE.116*** https://www.tandfonline.com/doi/pdf/10.4161/pri.29237
Unexpected prion phenotypes in experimentally transfused animals: predictive models for humans?
Emmanuel E. Comoy, Jacqueline Mikol & Jean-Philippe Deslys
Pages 162-169 | Received 06 Jul 2018, Accepted 24 Jul 2018, Accepted author version posted online: 06 Aug 2018, Published online: 16 Aug 2018
ABSTRACT
The recently reevaluated high prevalence of healthy carriers (1/2,000 in UK) of variant Creutzfeldt-Jakob Disease (v-CJD), whose blood might be infectious, suggests that the evolution of this prion disease might not be under full control as expected.
After experimental transfusion of macaques and conventional mice with blood derived from v-CJD exposed (human and animal) individuals, we confirmed in these both models the transmissibility of v-CJD, but we also observed unexpected neurological syndromes transmissible by transfusion: despite their prion etiology confirmed through transmission experiments, these original cases would escape classical prion diagnosis, notably in the absence of detectable abnormal PrP with current techniques.
It is noteworthy that macaques developed an original, yet undescribed myelopathic syndrome associating demyelination and pseudo-necrotic lesions of spinal cord, brainstem and optical tract without affecting encephalon, which is rather evocative of spinal cord disease than prion disease in human medicine.
These observations strongly suggest that the spectrum of human prion diseases may extend the current field restricted to the phenotypes associated to protease-resistant PrP, and may notably include spinal cord diseases.
KEYWORDS: (5-10): prion, vCJD, macaque, mouse, spinal cord disease, myelopathy, transfusion, abnormal PrP, demyelination, spongiform change
This article refers to:
Additional information
Funding
The original laboratory work was funded by European Commission [Fifth Framework Programme, QLK1-CT-2002-01096], French Research Funding Agency (Agence Nationale de la Recherche, ANR) [ANR-10-BLAN-1330 01], Health Canada [4500216567] and MacoPharma.
WEDNESDAY, OCTOBER 17, 2018
PRICE OF TSE PRION POKER GOES UP spectrum of human prion diseases may extend the current field and may notably include spinal cord diseases
Communicated by: Terry S Singeltary Sr
[Terry S. Singeltary Sr. has added the following comment:
"According to the World Health Organisation, the future public health threat of vCJD in the UK and Europe and potentially the rest of the world is of concern and currently unquantifiable. However, the possibility of a significant and geographically diverse vCJD epidemic occurring over the next few decades cannot be dismissed . The key word here is diverse. What does diverse mean? If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"
TUESDAY, AUGUST 7, 2018
Unexpected prion phenotypes in experimentally transfused animals: predictive models for humans?
MONDAY, NOVEMBER 06, 2017
Experimental transfusion of variant CJD-infected blood reveals previously uncharacterised prion disorder in mice and macaque
WEDNESDAY, OCTOBER 17, 2018
PRICE OF TSE PRION POKER GOES UP spectrum of human prion diseases may extend the current field and may notably include spinal cord diseases
Singeltary on Scrapie and human transmission way back, see;
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
============== https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion.. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEYhttps://web.archive.org/web/20170126051158/http://collections.europarchive.org/tna/20080102222950/http://www.bseinquiry.gov.uk/files/yb/1990/09/23001001.pdf
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
here is the latest;
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys.
Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states.
AND ANOTHER STUDY;
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017, AND included 104 patients.
SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%), AND THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
snip...see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry
Prion 2017
Conference Abstracts CWD 2017 PRION CONFERENCE
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation.
PRION 2017
DECIPHERING NEURODEGENERATIVE DISORDERS
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO
PRION 2017
CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS
*** PRION 2017 CONFERENCE VIDEO
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC
just out CDC...see;
Research
Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions
Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)
M. A. Barria et al.
ABSTRACT
Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted.
Molecular Barriers to Zoonotic Transmission of Prions
Marcelo A. Barria, Aru Balachandran, Masanori Morita, Tetsuyuki Kitamoto, Rona Barron, Jean Manson, Richard Knight, James W. Ironside, and Mark W. Headcorresponding author
snip...
The conversion of human PrPC by CWD brain homogenate in PMCA reactions was less efficient when the amino acid at position 129 was valine rather than methionine.
***Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.
snip...
However, we can say with confidence that under the conditions used here, none of the animal isolates tested were as efficient as C-type BSE in converting human PrPC, which is reassuring.
***Less reassuring is the finding that there is no absolute barrier to the conversion of human PrPC by CWD prions in a protocol using a single round of PMCA and an entirely human substrate prepared from the target organ of prion diseases, the brain.
ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION
10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question...
''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)
EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors
First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132 ;
also, see;
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
snip...
The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure.
https://efsa.onlinelibrary..wiley.com/doi/full/10.2903/j.efsa.2018.5132
10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question...
''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)
EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors
First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132 ;
also, see;
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
snip...
The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure.
https://efsa.onlinelibrary..wiley.com/doi/full/10.2903/j.efsa.2018.5132
zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm
***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE.116*** https://www.tandfonline.com/doi/pdf/10.4161/pri.29237
snip...see tull text;
THURSDAY, OCTOBER 04, 2018
Cervid to human prion transmission 5R01NS088604-04 Update
Friday, November 22, 2013
Wasting disease is threat to the entire UK deer population CWD TSE Prion disease Singeltary submission to Scottish Parliament
Research and analysis
Creutzfeldt-Jakob disease (CJD) biannual update (August 2014), with updated guidance on decontamination of gastrointestinal endoscopy equipment
***Updated 17 August 2018
SATURDAY, OCTOBER 06, 2018
Evaluation of iatrogenic risk of CJD transmission associated with corneal transplantation
SATURDAY, SEPTEMBER 22, 2018
Emerging Diseases, Infection Control & California Dental Practice Act
THURSDAY, OCTOBER 04, 2018
Case Western Reserve researchers to examine skin prions in fatal neurodegenerative disease $2.9 million NIH grant focuses on transmission and diagnostic testing
WEDNESDAY, JULY 04, 2018
CREUTZFELDT-JAKOB DISEASE: GUIDELINES FOR SOCIAL WORKERS IN ENGLAND June 2018
MONDAY, JUNE 18, 2018
Ecuador Six Case series of Creutzfeldt-Jakob disease in a third-level hospital in Quito
WEDNESDAY, SEPTEMBER 26, 2018
A new variant of Creutzfeldt-Jakob disease in the UK 1995 revisited 2018 a review of science
CJD QUESTIONNAIRE
Terry S. Singeltary Sr.