Monday, October 25, 2021

Prion Infectivity and PrPBSE in the Peripheral and Central Nervous System of Cattle 8 Months Post Oral BSE Challenge

Prion Infectivity and PrPBSE in the Peripheral and Central Nervous System of Cattle 8 Months Post Oral BSE Challenge

Ivett Ackermann 1 , Reiner Ulrich 2 , Kerstin Tauscher 3 , Olanrewaju I. Fatola 1,4 , Markus Keller 1 , James C. Shawulu 1,5, Mark Arnold 6 , Stefanie Czub 7 , Martin H. Groschup 1 and Anne Balkema-Buschmann 1,*

1 Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; Ivett.Ackermann@fli.de (I.A.); fatolan@yahoo.com (O.I.F.); Markus.Keller@fli.de (M.K.); james.shawulu@ymail.com (J.C.S.); Martin.Groschup@fli.de (M.H.G.) 2 Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; reiner.ulrich@vetmed.uni-leipzig.de 3 Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; Kerstin_Tauscher@gmx.de 4 Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200284, Nigeria 5 Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Abuja, Abuja 900105, Nigeria 6 Animal and Plant Health Agency Sutton Bonington, Sutton Bonington, Leicestershire LE12 5RB, UK; Mark.Arnold@apha.gov.uk 7 Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB T1J 3Z4, Canada; stefanie.czub37@gmail.com * Correspondence: anne.buschmann@fli.de

Abstract: After oral exposure of cattle with classical bovine spongiform encephalopathy (C-BSE), the infectious agent ascends from the gut to the central nervous system (CNS) primarily via the autonomic nervous system. However, the timeline of this progression has thus far remained widely undetermined. Previous studies were focused on later time points after oral exposure of animals that were already 4 to 6 months old when challenged. In contrast, in this present study, we have orally inoculated 4 to 6 weeks old unweaned calves with high doses of BSE to identify any possible BSE infectivity and/or PrPBSE in peripheral nervous tissues during the first eight months postinoculation (mpi). For the detection of BSE infectivity, we used a bovine PrP transgenic mouse bioassay, while PrPBSE depositions were analyzed by immunohistochemistry (IHC) and by protein misfolding cyclic amplification (PMCA). We were able to show that as early as 8 mpi the thoracic spinal cord as well as the parasympathetic nodal ganglion of these animals contained PrPBSE and BSE infectivity. This shows that the centripetal prion spread starts early after challenge at least in this age group, which represents an essential piece of information for the risk assessments for food, feed, and pharmaceutical products produced from young calves.

snip...

5. Conclusions

In summary, we detected PrPBSE and BSE infectivity as early as 8 mpi in the nodal ganglion as well as in the thoracic spinal cord from one calf challenged before weaning in this study and also at eight mpi in the thoracic spinal cord sampled from cattle challenged at 4 to 6 months of age during an earlier pathogenesis study [5,20]. This current study considerably expands the existing data on the early C-BSE pathogenesis by demonstrating that after challenge with an unnaturally high dose of 100 g BSE-positive brainstem tissue, parts of the peripheral and central nervous system from cattle may already contain PrPBSE and BSE infectivity after short time periods up to 8 months after oral infection, which should be considered relevant information for risk assessments for food and pharmaceutical products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10 .3390/ijms222111310/s1 . 

Keywords: prion protein; BSE; infectivity; PrPBSE; cattle; peripheral and central nervous system; protein misfolding cyclic amplification (PMCA)



O.4.3

Spread of BSE prions in cynomolgus monkeys (Macaca fascicularis) after oral transmission

Edgar Holznagel1, Walter Schulz-Schaeffer2, Barbara Yutzy1, Gerhard Hunsmann3, Johannes Loewer1 1Paul-Ehrlich-Institut, Federal Institute for Sera and Vaccines, Germany; 2Department of Neuropathology, Georg-August University, Göttingen, Germany, 3Department of Virology and Immunology, German Primate Centre, Göttingen, Germany

Background: BSE-infected cynomolgus monkeys represent a relevant animal model to study the pathogenesis of variant Creutzfeldt-Jacob disease (vCJD).

Objectives: To study the spread of BSE prions during the asymptomatic phase of infection in a simian animal model.

Methods: Orally BSE-dosed macaques (n=10) were sacrificed at defined time points during the incubation period and 7 orally BSE-dosed macaques were sacrificed after the onset of clinical signs. Neuronal and non-neuronal tissues were tested for the presence of proteinase-K-resistant prion protein (PrPres) by western immunoblot and by paraffin-embedded tissue (PET) blot technique.

Results: In clinically diseased macaques (5 years p.i. + 6 mo.), PrPres deposits were widely spread in neuronal tissues (including the peripheral sympathetic and parasympathetic nervous system) and in lymphoid tissues including tonsils. In asymptomatic disease carriers, PrPres deposits could be detected in intestinal lymph nodes as early as 1 year p.i., but CNS tissues were negative until 3 – 4 years p.i. Lumbal/sacral segments of the spinal cord and medulla oblongata were PrPres positive as early as 4.1 years p.i., whereas sympathetic trunk and all thoracic/cervical segments of the spinal cord were still negative for PrPres. However, tonsil samples were negative in all asymptomatic cases.

Discussion: There is evidence for an early spread of BSE to the CNS via autonomic fibres of the splanchnic and vagus nerves indicating that trans-synaptical spread may be a time-limiting factor for neuroinvasion. Tonsils were predominantly negative during the main part of the incubation period indicating that epidemiological vCJD screening results based on the detection of PrPres in tonsil biopsies may mostly tend to underestimate the prevalence of vCJD among humans.

P.4.23

Transmission of atypical BSE in humanized mouse models

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time. The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice.

BSE-H is also transmissible in our humanized Tg mice.

The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.

http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf

P03.137

Transmission of BSE to Cynomolgus Macaque, a Non-human Primate; Development of Clinical Symptoms and Tissue Distribution of PrPSC

Yamakawa, Y1; Ono, F2; Tase, N3; Terao, K3; Tannno, J3; Wada, N4; Tobiume, M5; Sato, Y5; Okemoto-Nakamura, Y1; Hagiwara, K1; Sata, T5 1National Institure of Infectious diseases, Cell biology and Biochemistry, Japan; 2Corporation for Production and Research Laboratory Primates., Japan; 3National Institure of Biomedical Innovation, Tsukuba Primate Reserch Center, Japan; 4Yamauchi Univ., Veterinary Medicine, Japan; 5National Institure of Infectious diseases, Pathology, Japan

Two of three cynomolgus monkeys developed abnormal neuronal behavioral signs at 30-(#7) and 28-(#10) months after intracerebral inoculation of 200ul of 10% brain homogenates of BSE affected cattle (BSE/JP6). Around 30 months post inoculation (mpi), they developed sporadic anorexia and hyperekplexia with squeal against environmental stimulations such as light and sound. Tremor, myoclonic jerk and paralysis became conspicuous during 32 to 33-mpi, and symptoms become worsened according to the disease progression. Finally, one monkey (#7) fell into total paralysis at 36-mpi. This monkey was sacrificed at 10 days after intensive veterinary care including infusion and per oral supply of liquid food. The other monkey (#10) had to grasp the cage bars to keep an upright posture caused by the sever ataxia. This monkey was sacrificed at 35-mpi. EEG of both monkeys showed diffuse slowing. PSD characteristic for sporadic CJD was not observed in both monkeys. The result of forearm movement test showed the hypofunction that was observed at onset of clinical symptoms. Their cognitive function determined by finger maze test was maintained at the early stage of sideration. However, it was rapidly impaired followed by the disease progression. Their autopsied tissues were immunochemically investigated for the tissue distribution of PrPSc. Severe spongiform change in the brain together with heavy accumulation of PrPSc having the type 2B/4 glycoform profile confirmed successful transmission of BSE to Cynomolgus macaques. Granular and linear deposition of PrPSC was detected by IHC in the CNS of both monkeys. At cerebral cortex, PrPSC was prominently accumulated in the large plaques. Sparse accumulation of PrPSc was detected in several peripheral nerves of #7 but not in #10 monkey, upon the WB analysis. Neither #7 nor #10 monkey accumulated detectable amounts of PrPSc in their lymphatic organs such as tonsil, spleen, adrenal grands and thymus although PrPSc was barely detected in the submandibular lymph node of #7 monkey. Such confined tissue distribution of PrPSc after intracerebral infection with BSE agent is not compatible to that reported on the Cynomolgus macaques infected with BSE by oral or intra-venous (intra-peritoneal) routs, in which PrPSc was accumulated at not only CNS but also widely distributed lymphatic tissues.

P04.27

Experimental BSE Infection of Non-human Primates: Efficacy of the Oral Route

Holznagel, E1; Yutzy, B1; Deslys, J-P2; Lasmézas, C2; Pocchiari, M3; Ingrosso, L3; Bierke, P4; Schulz-Schaeffer, W5; Motzkus, D6; Hunsmann, G6; Löwer, J1 1Paul-Ehrlich-Institut, Germany; 2Commissariat à l´Energie Atomique, France; 3Instituto Superiore di Sanità, Italy; 4Swedish Institute for Infectious Disease control, Sweden; 5Georg August University, Germany; 6German Primate Center, Germany

Background: In 2001, a study was initiated in primates to assess the risk for humans to contract BSE through contaminated food. For this purpose, BSE brain was titrated in cynomolgus monkeys.

Aims: The primary objective is the determination of the minimal infectious dose (MID50) for oral exposure to BSE in a simian model, and, by in doing this, to assess the risk for humans. Secondly, we aimed at examining the course of the disease to identify possible biomarkers.

Methods: Groups with six monkeys each were orally dosed with lowering amounts of BSE brain: 16g, 5g, 0.5g, 0.05g, and 0.005g. In a second titration study, animals were intracerebrally (i.c.) dosed (50, 5, 0.5, 0.05, and 0.005 mg).

Results: In an ongoing study, a considerable number of high-dosed macaques already developed simian vCJD upon oral or intracerebral exposure or are at the onset of the clinical phase. However, there are differences in the clinical course between orally and intracerebrally infected animals that may influence the detection of biomarkers.

Conclusions: Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate. The difference in the incubation period between 5 g oral and 5 mg i.c. is only 1 year (5 years versus 4 years). However, there are rapid progressors among orally dosed monkeys that develop simian vCJD as fast as intracerebrally inoculated animals.

The work referenced was performed in partial fulfilment of the study “BSE in primates“ supported by the EU (QLK1-2002-01096).

http://www.neuroprion.org/resources/pdf_docs/conferences/prion2007/abstract_book.pdf

Bovine spongiform encephalopathy: the effect of oral exposure dose on attack rate and incubation period in cattle

G. A. H. Wells,1 T. Konold,1 M. E. Arnold,1 A. R. Austin,1 3 S. A. C. Hawkins,1 M. Stack,1 M. M. Simmons,1 Y. H. Lee,2 D. Gavier-Wide´n,3 M. Dawson1 4 and J. W. Wilesmith1 1 Correspondence G. A. H. Wells


1 Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK

2 National Veterinary Research and Quarantine Service, Anyang, Republic of Korea

3 National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden

Received 27 July 2006

Accepted 18 November 2006

The dose–response of cattle exposed to the bovine spongiform encephalopathy (BSE) agent is an important component of modelling exposure risks for animals and humans and thereby, the modulation of surveillance and control strategies for BSE. In two experiments calves were dosed orally with a range of amounts of a pool of brainstems from BSE-affected cattle. Infectivity in the pool was determined by end-point titration in mice. Recipient cattle were monitored for clinical disease and, from the incidence of pathologically confirmed cases and their incubation periods (IPs), the attack rate and IP distribution according to dose were estimated. The dose at which 50 % of cattle would be clinically affected was estimated at 0.20 g brain material used in the experiment, with 95 % confidence intervals of 0.04–1.00 g. The IP was highly variable across all dose groups and followed a log-normal distribution, with decreasing mean as dose increased. There was no evidence of a threshold dose at which the probability of infection became vanishingly small, with 1/15 (7 %) of animals affected at the lowest dose (1 mg).

snip...

DISCUSSION

The study has demonstrated that disease in cattle can be produced by oral exposure to as little as 1 mg brain homogenate (¡100.4 RIII mouse i.c./i.p. ID50 units) from clinically affected field cases of BSE and that the limiting dose for infection of calves is lower than this exposure...

snip...end



P04.27

Experimental BSE Infection of Non-human Primates: Efficacy of the Oral Route

Holznagel, E1; Yutzy, B1; Deslys, J-P2; Lasm�zas, C2; Pocchiari, M3; Ingrosso, L3; Bierke, P4; Schulz-Schaeffer, W5; Motzkus, D6; Hunsmann, G6; L�wer, J1 1Paul-Ehrlich-Institut, Germany; 2Commissariat � l�Energie Atomique, France; 3Instituto Superiore di Sanit�, Italy; 4Swedish Institute for Infectious Disease control, Sweden; 5Georg August University, Germany; 6German Primate Center, Germany

Background:

In 2001, a study was initiated in primates to assess the risk for humans to contract BSE through contaminated food. For this purpose, BSE brain was titrated in cynomolgus monkeys.

Aims:

The primary objective is the determination of the minimal infectious dose (MID50) for oral exposure to BSE in a simian model, and, by in doing this, to assess the risk for humans. Secondly, we aimed at examining the course of the disease to identify possible biomarkers.

Methods:

Groups with six monkeys each were orally dosed with lowering amounts of BSE brain: 16g, 5g, 0.5g, 0.05g, and 0.005g. In a second titration study, animals were intracerebrally (i.c.) dosed (50, 5, 0.5, 0.05, and 0.005 mg).

Results:

In an ongoing study, a considerable number of high-dosed macaques already developed simian vCJD upon oral or intracerebral exposure or are at the onset of the clinical phase. However, there are differences in the clinical course between orally and intracerebrally infected animals that may influence the detection of biomarkers.

Conclusions:

Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate. The difference in the incubation period between 5 g oral and 5 mg i.c. is only 1 year (5 years versus 4 years). However, there are rapid progressors among orally dosed monkeys that develop simian vCJD as fast as intracerebrally inoculated animals.

The work referenced was performed in partial fulfilment of the study �BSE in primates� supported by the EU (QLK1-2002-01096).



look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE;

Risk of oral infection with bovine spongiform encephalopathy agent in primates

Corinne Ida Lasm�zas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Fr�d�ric Auvr�, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Sal�s, Gerald Wells, Paul Brown, Jean-Philippe Deslys Summary The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.

snip...

BSE bovine brain inoculum

100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 0�1 mg 0�01 mg

Primate (oral route)* 1/2 (50%)

Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%)

RIII mice (ic ip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)

PrPres biochemical detection

The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was

inoculated into mice and cattle.8 *Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the first positive animal (%). The accuracy of

bioassays is generally judged to be about plus or minus 1 log. ic ip=intracerebral and int****ritoneal.

Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula

Published online January 27, 2005


It is clear that the designing scientists must

also have shared Mr Bradley's surprise at the results because all the dose

levels right down to 1 gram triggered infection.


6. It also appears to me that Mr Bradley's answer (that it would take less than say 100 grams) was probably given with the benefit of hindsight; particularly if one considers that later in the same answer Mr Bradley expresses his surprise that it could take as little of 1 gram of brain to cause BSE by the oral route within the same species. This information did not become available until the "attack rate" experiment had been completed in 1995/96. This was a titration experiment designed to ascertain the infective dose. A range of dosages was used to ensure that the actual result was within both a lower and an upper limit within the study and the designing scientists would not have expected all the dose levels to trigger infection. The dose ranges chosen by the most informed scientists at that time ranged from 1 gram to three times one hundred grams. It is clear that the designing scientists must have also shared Mr Bradley's surprise at the results because all the dose levels right down to 1 gram triggered infection.


RESEARCH ARTICLE

Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease

Nathaniel D. Denkers1☯, Clare E. Hoover2☯, Kristen A. DavenportID3, Davin M. Henderson1, Erin E. McNultyID1, Amy V. Nalls1, Candace K. Mathiason1, Edward A. HooverID1*

1 Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America, 2 AstraZeneca Inc., Waltham, Massachusetts, United States of America, 3 Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America ☯ These authors contributed equally to this work. * Edward.hoover@colostate.edu

Abstract

The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogene- sis. We orally inoculated white-tailed deer with either single or multiple divided doses of pri- ons of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD- positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD min- imum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.

Snip...

Discussion

As CWD expands across North America and Scandinavia, how this disease is transmitted so efficiently remains unclear, given the low concentrations of prions shed in secretions and excretions [13, 14]. The present studies demonstrated that a single oral exposure to as little as 300nmg of CWD-positive brain or equivalent saliva can initiate infection in 100% of exposed white-tailed deer. However, distributing this dose as 10, 30 ng exposures failed to induce infec- tion. Overall, these results suggest that the minimum oral infectious exposure approaches 100 to 300 ng of CWD-positive brain equivalent. These dynamics also invite speculation as to whether potential infection co-factors, such as particle binding [46, 47] or compromises in mucosal integrity may influence infection susceptibility, as suggested from two studies in rodent models [48, 49].

Few studies in rodent models have explored oral infection with murine or hamster adapted scrapie by assessing the same total dose administered as a single bolus vs. the same bolus divided into fractional, sequential exposures [50–52]. The results reported by Diringer et al. [50] and Jacquemot et al. [52] have indicated that divided-dose exposures were as effective as a single bolus only if the interval between doses was short (1–2 days). In deer, we likewise found that when a total dose of 300 ng of brain was administered as 10 doses divided doses over 12 weeks this exposure failed to induce CWD infection, whereas three weekly 100 ng doses (300 ng total) induced infection. While this latter outcome may have involved an additive dynamic, we cannot exclude that a dose 100 ng alone also may have been sufficient to establish infection. Our conclusions here are unfortunately limited by the absence of a single 100 ng dose group. Additional experiments are needed to further directly compare single vs. divided exposures to strengthen the tenet that establishment of CWD infection is more a threshold than cumulative dose phenomenon.

We also sought to examine a relatively unexamined possibility that prions emanating from different tissues and/or cells may possess different capacities to establish infections by mucosal routes. Our results indicated that brain and saliva inocula containing similar levels of prion seeding activity, also had similar infectivity, which did not support our hypothesis that saliva prions may be more infectious by mucosal routes. There are of course, several caveats bearing on this conclusion. These could include: the inherent limits in using an in vitro seeding assay as a surrogate to equate in vivo infectivity, the likelihood that small differences in prion suscep- tibility among deer may be more significant at very low exposure doses, and the greater varia- tion of inoculum uptake and routing through mucosal surfaces associated with the oral route of exposure.

The chief correlate we observed between magnitude of infectious dose and disease course was in time from exposure to first detected amplification of prions in tonsil, an event which is closely followed by or concurrent with detection in pharyngeal lymph nodes [41]. Once a threshold dose was established, the subsequent pathogenesis of infection and disease appeared to vary little.

In addition to potential cofactors that could influence CWD infectivity, such as particle binding [47] and compromised mucosal integrity [48, 53], there is PRNP genotype, in which polymorphisms at codon 96 of the white-tailed deer are known to affect the temporal dynam- ics of CWD infections [23, 41, 45]. In the present studies, most cohorts of 96GG deer became CWD-positive before 96GS animals in the same exposure group [cohorts 1, 2, 4, 6]. Thus, the low dose studies are consistent with the current concept of delayed conversion rate in PRNP 96GS vs. 96GG white-tailed deer [44].

In conclusion, we have attempted to model and better understand CWD infection relative to natural exposure. The results demonstrate: (a) that the minimum CWD oral infectious dose is vastly lower than historical studies used to establish infection; (b) that a direct relationship exists between dose and incubation time to first prion replication detection in tonsils, irrespec- tive of genotype; (c) that a difference was not discernible between brain vs. saliva source prions in ability to establish infection or in resultant disease course; and (d) that the CWD infection process appears to conform more to a threshold dose than an accumulative dose dynamic.


America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion

so far, we have been lucky. to date, with the science at hand, no cwd transmitted to cattle, that has been documented, TO DATE, WITH THE SCIENCE AT HAND, it's not to say it has not already happened, just like with zoonosis of cwd i.e. molecular transmission studies have shown that cwd transmission to humans would look like sporadic cjd, NOT nvCJD or what they call now vCJD. the other thing is virulence and or horizontal transmission. this is very concerning with the recent fact of what seems to be a large outbreak of a new tse prion disease in camels in Africa. there is much concern now with hay, straw, grains, and such, with the cwd tse prion endemic countries USA, Canada. what is of greatest concern is the different strains of cwd, and the virulence there from? this thing (cwd) keeps mutating to different strains, and to different species, the bigger the chance of one of these strains that WILL TRANSMIT TO CATTLE OR HUMANS, and that it is documented (i believe both has already occured imo with scienct to date). with that said, a few things to ponder, and i am still very concerned with, the animal feed. we now know from transmission studies that cwd and scrapie will transmit to pigs by oral routes. the atypical bse strains will transmit by oral routes. i don't mean to keep kicking a mad cow, just look at the science; 

***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle

Author item HALEY, NICHOLAS - Kansas State University item SIEPKER, CHRISTOPHER - Kansas State University item Greenlee, Justin item RICHT, JÜRGEN - Kansas State University Submitted to: Journal of General Virology Publication Type: Peer Reviewed Journal Publication Acceptance Date: 3/30/2016 Publication Date: 1/7/2016

Citation: Haley, N.J., Siepker, C., Greenlee, J.J., Richt, J.A. 2016. Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle. Journal of General Virology. 97:1720-1724.

Interpretive Summary: Chronic Wasting Disease (CWD), a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America, is a transmissible spongiform encephalopathy (TSE). TSEs are caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Cattle could be exposed to chronic wasting disease (CWD) by contact with infected farmed or free-ranging cervids. The purpose of this study was to use an in vitro amplification method called real time quaking induced conversion (RT-QuIC) to assess tissues from cattle inoculated with CWD for low levels of prions not detected by traditional diagnostic methods such as western blot and immunohistochemistry. This study reports that prions were identified by RT-QuIC only in cattle that were confirmed positive by traditional methods. However, prions were rarely identified in some peripheral tissues such as mesenteric lymph node, tonsil, or nasal turbinate that were not considered positive by traditional methods. These results suggest that cattle experimentally inoculated with CWD may have some limited amount of prion infectivity outside of the brain and spinal cord that may represent a previously unrecognized risk for transmission. This information could have an impact on regulatory officials developing plans to reduce or eliminate TSEs and farmers with concerns about ranging cattle on areas where CWD may be present.

Technical Abstract: Chronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease resistant prion protein throughout the central nervous system (CNS), as well as in both lymphatic and excretory tissues – an aspect of prion disease pathogenesis not observed in cattle with BSE. Using seeded amplification through real time quaking induced conversion (RT-QuIC), we investigated whether the bovine host or prion agent was responsible for this aspect of TSE pathogenesis. We blindly examined numerous central and peripheral tissues from cattle inoculated with CWD for prion seeding activity. Seeded amplification was readily detected in the CNS, though rarely observed in peripheral tissues, with a limited distribution similar to that of BSE prions in cattle. This seems to indicate that prion peripheralization in cattle is a host-driven characteristic of TSE infection. 


Title: Experimental transmission of transmissible spongiform encephalopathies (scrapie, chronic wasting disease, transmissible mink encephalopathy) to cattle and their differentiation from bovine spongiform encephalopathy

Author item Hamir, Amirali item CUTLIP, RANDALL item MILLER, JANICE item Kunkle, Robert item Richt, Juergen item Greenlee, Justin item Nicholson, Eric item Kehrli Jr, Marcus Submitted to: World Association of Veterinary Laboratory Diagnosticians Publication Type: Proceedings

Publication Acceptance Date: 8/10/2007 Publication Date: 11/11/2007

Citation: Hamir, A.N., Cutlip, R.C., Miller, J.M., Kunkle, R.A., Richt, J.A., Greenlee, J.J., Nicholson, E.M., Kehrli, Jr., M.E. 2007. Experimental transmission of transmissible spongiform encephalopathies (scrapie, chronic wasting disease, transmissible mink encephalopathy) to cattle and their differentiation from bovine spongiform encephalopathy. In: Proceedings of the World Association of Veterinary Laboratory Diagnosticians 13th International Symposium, November 11-14, 2007, Melbourne, Australia. p. 29. Interpretive Summary:

Technical Abstract: Introduction: Experimental cross-species transmission of TSE agents provides valuable information for identification of potential host ranges of known TSEs. This report provides a synopsis of TSE (scrapie, CWD, TME) transmission studies that have been conducted in cattle and compares these findings to those seen in animals with BSE. Materials & Methods: Generally 6-month-old bull calves were obtained and assigned to inoculated and control groups. Inoculated calves were housed in a Biosafety Level 2 isolation barn at the National Animal Disease Center (NADC), Ames, Iowa. Calves were inoculated intracerebrally with 1 ml of a 10% TSE brain inoculum. Results: Results of various TSE cattle experiments with intracerebral inoculation of scrapie, CWD and TME are shown in tabular form (Table 1). Table 1. Comparison of experimental scrapie, chronic wasting disease (CWD) and transmissible mink encephalopathy (TME) in cattle inoculated by the intracerebral route during first passage of the inocula. Abnormal CNS signs: Scrapie. Anorexia, weight loss, leg and back stiffness. Some showed incoordination and posterior weakness. Eventual severe lethargy. CWD. Anorexia, weight loss, occasional aimless circling, listlessness and excited by loud noises. TME. Variable hyperexcitability with occasional falling to the ground. Some showing circling and aggressive behavior. Incubation (survival) time: Scrapie. 14 – 18 months. CWD. 23 – 63 months. TME. 13 – 16 months. Attack rate: Scrapie. 100%. CWD. CWD from mule deer: 38%. CWD from elk: 86%. TME. 100% Histopatholgic lesions: Scrapie. Some vacuolation and central of chromatolysis of neurons. CWD. Isolated vacuolated neurons, a few degenerate axons, and a mild astrocytosis. TME. Extensive vacuolation of neuronal perikarya and neuropil. Presence of mild multifocal gliosis. Western blot (brainstem): Scrapie. All three isoforms of PrP**res present. CWD. All three isoforms of PrP**res seen. TME. All three isoforms of PrP**res seen. Immunohistochemistry: PrP**res in lymphoreticular tissues: Scrapie. Not present. CWD. Not present. TME. Not present. PrP**res in CNS: Scrapie. Present within perikaryon and processes of neurons. CWD. Multifocal distribution with labeling primarily in glial cells (astrocytes). TME. Diffusely present and usually evenly distributed in neuropil. Conclusions: 1. All three TSEs agents (scrapie, CWD and TME) are capable of propagating in cattle tissues when administered intracerebrally. 2. All three TSEs can be distinguished from each other and from BSE when inoculated intracerebrally by histopathology, immunohistochemistry and Western blot techniques.


Title: EXPERIMENTAL SECOND PASSAGE OF CHRONIC WASTING DISEASE (CWD(MULE DEER)) AGENT TO CATTLE

Author item Hamir, Amirali item Kunkle, Robert item MILLER, JANICE item Greenlee, Justin item Richt, Juergen

Submitted to: Journal of Comparative Pathology Publication Type: Peer Reviewed Journal Publication Acceptance Date: 7/25/2005 Publication Date: 1/1/2006

Citation: Hamir, A.N., Kunkle, R.A., Miller, J.M., Greenlee, J.J., Richt, J.A. 2006. Experimental second passage of chronic wasting disease (CWD(mule deer)) agent to cattle. Journal of Comparative Pathology. 134(1):63-69.

Interpretive Summary: To compare the findings of experimental first and second passage of chronic wasting disease (CWD) in cattle, 6 calves were inoculated into the brain with CWD-mule deer agent previously (first) passaged in cattle. Two other uninoculated calves served as controls. Beginning 10-12 months post inoculation (PI), all inoculates lost appetite and weight. Five animals subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months PI, all cattle had been euthanized because of poor prognosis. None of the animals showed microscopic lesions of spongiform encephalopathy (SE) but the CWD agent was detected in their CNS tissues by 2 laboratory techniques (IHC and WB). These findings demonstrate that inoculated cattle amplify CWD agent but also develop clinical CNS signs without manifestation of microscopic lesions of SE. This situation has also been shown to occur following inoculation of cattle with another TSE agent, namely, sheep scrapie. The current study confirms previous work that indicates that the diagnostic tests currently used for confirmation of bovine spongiform encephalopathy (BSE) in the U.S. would detect CWD in cattle, should it occur naturally. Furthermore, it raises the possibility of distinguishing CWD from BSE in cattle due to the absence of microscopic lesions and a unique multifocal distribution of PrPres, as demonstrated by IHC, which in this study, appears to be more sensitive than the WB.

Technical Abstract: To compare clinicopathological findings of first and second passage of chronic wasting disease (CWD) in cattle, a group of calves (n=6) were intracerebrally inoculated with CWD-mule deer agent previously (first) passaged in cattle. Two other uninoculated calves served as controls. Beginning 10-12 months post inoculation (PI), all inoculates lost appetite and lost weight. Five animals subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months PI, all cattle had been euthanized because of poor prognosis. None of the animals showed microscopic lesions of spongiform encephalopathy (SE) but PrPres was detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify CWD PrPres but also develop clinical CNS signs without manifestation of morphologic lesions of SE. This situation has also been shown to occur following inoculation of cattle with another TSE agent, scrapie. The current study confirms previous work that indicates the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) in the U.S. would detect CWD in cattle, should it occur naturally. Furthermore, it raises the possibility of distinguishing CWD from BSE in cattle due to the absence of neuropathologic lesions and a unique multifocal distribution of PrPres, as demonstrated by IHC, which in this study, appears to be more sensitive than the WB.


FRIDAY, AUGUST 27, 2021 

Cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions


Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


FDA Reports on VFD Compliance

John Maday

August 30, 2019 09:46 AM VFD-Form 007 (640x427)

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday )

Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary.

On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


Overall, the FDA reports a high level of compliance across the affected livestock-industry sectors.

In fiscal year 2016, FDA began a small, three-part pilot inspection program that began with inspectors visiting feed distributors to review randomly selected VFD documents. The inspectors then selected one VFD at the distributor and conducted further inspections of the veterinarian and producer (client) named on that VFD.

In fiscal years 2017 and 2018, FDA continued those three-part inspections and expanded the program to include state feed regulatory partners. In fiscal year 2017, state personnel inspected VFD distributors and reviewed selected VFDs for compliance with the requirements. In 2018, those state inspectors began conducting three-part inspections, similar to those conducted by the FDA investigators. With state inspectors contributing, the number of VFD inspections increased from 57 in 2016 to 130 in 2017 and 269 during 2018.

Of the 269 inspections during 2018, 230 required no action, 38 indicated voluntary action and just one indicated official enforcement action.

Key findings in the report include:

Distributors (2018)

Distributor had notified FDA of their intent to distribute VFD feeds -- 94.8%

Distributors who distributed a VFD feed that complied with the terms of the VFD -- 91.5%

Distributors who manufacture VFD feed: Drug inventory or production records showed the correct amount of drug was added to the feed for the VFD reviewed -- 96.7%

Distributors who manufacture VFD feed: Labels and formulas matched the VFD reviewed -- 91.0%

Distributor’s VFD feed labels contained the VFD caution statement -- 77.2%

Veterinarians

Veterinarians had an active license in the state where the VFD feed authorized on the VFD order(s) is being fed -- 100%

VFDs included veterinarians’ electronic or written signature -- 98.6%

VFDs included the withdrawal time, special instructions, and/or cautionary statements -- 95.3%

Producers

Client did not feed VFD feed beyond the expiration date on the VFD -- 100%

Client fed VFD feed to the animals authorized on the VFD (number, species, and/or production class) -- 100%

Client fed VFD feed for the duration identified on the VFD -- 100%

Client complied with the special instructions on the VFD -- 100%

FDA issued just one warning letter following inspections during fiscal year 2018, for a feed mill that “adulterated and misbranded VFD feed by distributing VFD feed to other distributors without first receiving an acknowledgment letter, in addition to adulterating and misbranding medicated and non-medicated feed for other reasons.”

In its report, FDA reminds stakeholders that VFD medicated feeds must be used in according to the approved conditions of use and must be under the oversight of a licensed veterinarian and consistent with a lawful VFD order. The agency intends to continue monitoring compliance, and to provide education, but FDA will also use enforcement strategies when voluntary compliance with the VFD final rule requirements is not achieved.

See the full summary report from FDA.


For more on the VFD rules and compliance, see these articles from BovineVetOnline.com.

VFD Audits: What to Expect


VFD Audits: Start with the Feed Distributor


FDA Draft Guidance Updates VFD Q&A







SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

***> EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 

THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001

Date: Tue, 9 Jan 2001 16:49:00 -0800

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy


snip...

[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.

[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]

[host Richard] could you repeat the question?

[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[not sure whom ask this] what group are you with?

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.

[not sure who is speaking] could you please disconnect Mr. Singeltary

[TSS] you are not going to answer my question?

[not sure whom speaking] NO

snip...see full archive and more of this;


3.2.1.2 Non‐cervid domestic species

The remarkably high rate of natural CWD transmission in the ongoing NA epidemics raises the question of the risk to livestock grazing on CWD‐contaminated shared rangeland and subsequently developing a novel CWD‐related prion disease. This issue has been investigated by transmitting CWD via experimental challenge to cattle, sheep and pigs and to tg mouse lines expressing the relevant species PrP.

For cattle challenged with CWD, PrPSc was detected in approximately 40% of intracerebrally inoculated animals (Hamir et al., 2005, 2006a, 2007). Tg mice expressing bovine PrP have also been challenged with CWD and while published studies have negative outcomes (Tamguney et al., 2009b), unpublished data provided for the purposes of this Opinion indicate that some transmission of individual isolates to bovinised mice is possible (Table 1).

In small ruminant recipients, a low rate of transmission was reported between 35 and 72 months post‐infection (mpi) in ARQ/ARQ and ARQ/VRQ sheep intracerebrally challenged with mule deer CWD (Hamir et al., 2006b), while two out of two ARQ/ARQ sheep intracerebrally inoculated with elk CWD developed clinical disease after 28 mpi (Madsen‐Bouterse et al., 2016). However, tg mice expressing ARQ sheep PrP were resistant (Tamguney et al., 2006) and tg mice expressing the VRQ PrP allele were poorly susceptible to clinical disease (Beringue et al., 2012; Madsen‐Bouterse et al., 2016). In contrast, tg mice expressing VRQ sheep PrP challenged with CWD have resulted in highly efficient, life‐long asymptomatic replication of these prions in the spleen tissue (Beringue et al., 2012).

A recent study investigated the potential for swine to serve as hosts of the CWD agent(s) by intracerebral or oral challenge of crossbred piglets (Moore et al., 2016b, 2017). Pigs sacrificed at 6 mpi, approximately the age at which pigs reach market weight, were clinically healthy and negative by diagnostic tests, although low‐level CWD agent replication could be detected in the CNS by bioassay in tg cervinised mice. Among pigs that were incubated for up to 73 mpi, some gave diagnostic evidence of CWD replication in the brain between 42 and 72 mpi. Importantly, this was observed also in one orally challenged pig at 64 mpi and the presence of low‐level CWD replication was confirmed by mouse bioassay. The authors of this study argued that pigs can support low‐level amplification of CWD prions, although the species barrier to CWD infection is relatively high and that the detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.


TUESDAY, JUNE 8, 2021 

***> Bovine spongiform encephalopathy: the effect of oral exposure dose on attack rate and incubation period in cattle


***> AS is considered more likely (subjective probability range 50–66%) that AS is a non-contagious, rather than a contagious, disease.

ATYPICAL SCRAPIE ROUGHLY HAS 50 50 CHANCE ATYPICAL SCRAPIE IS CONTAGIOUS, AS NON-CONTAGIOUS, TAKE YOUR PICK, BUT I SAID IT LONG AGO WHEN USDA OIE ET AL MADE ATYPICAL SCRAPIE A LEGAL TRADING COMODITY, I SAID YOUR PUTTING THE CART BEFORE THE HORSE, AND THAT'S EXACTLY WHAT THEY DID, and it's called in Texas, TEXAS TSE PRION HOLDEM POKER, WHO'S ALL IN $$$

THURSDAY, JULY 8, 2021

EFSA Scientific report on the analysis of the 2‐year compulsory intensified monitoring of atypical scrapie


MONDAY, JUNE 28, 2021 

BSE can propagate in sheep co‑infected or pre‑infected with scrapie


THURSDAY, DECEMBER 31, 2020 

Autoclave treatment of the classical scrapie agent US No. 13-7 and experimental inoculation to susceptible VRQ/ARQ sheep via the oral route results in decreased transmission efficiency


WEDNESDAY, MAY 29, 2019 

***> Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures 

USDA HERE'S YOUR SIGN!


SATURDAY, AUGUST 16, 2008

Qualitative Analysis of BSE Risk Factors in the United States February 13, 2000 at 3:37 pm PST (BSE red book)


Sunday, January 10, 2021 
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ... 



Sunday, January 10, 2021 

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

Owens, Julie 

From: Terry S. Singeltary Sr. [flounder9@verizon.net

Sent: Monday, July 24, 2006 1:09 PM To: FSIS RegulationsComments 

Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE) Page 1 of 98 8/3/2006 

Greetings FSIS, I would kindly like to comment on the following ;


APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018- 0087] Singeltary Submission [Federal Register Volume 84, Number 116 (Monday, June 17, 2019)] [Notices] [Pages 28001-28002] From the Federal Register Online via the Government Publishing Office [www.gpo.gov] [FR Doc No: 2019-12654] 
----------------------------------------------------------------------- 
DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2018-0087] Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. ----------------------------------------------------------------------- 
SUMMARY: We are advising the public of our preliminary concurrence with the World Organization for Animal Health's (OIE) bovine spongiform encephalopathy (BSE) risk designation for Nicaragua. The OIE recognizes this region as being of negligible risk for BSE. We are taking this action based on our review of information supporting the OIE's risk designation for this region.


Jan 13, 2015 — Page 1 of 2 regulations.gov. Comment from Terry Singeltary Sr. ... overtook the BSE GBR risk assessments for each country, and then.


$$$***> Why is USDA "only" BSE TSE Prion testing 25,000 samples a year? <***$$$ 

THURSDAY, AUGUST 20, 2020 

Why is USDA "only" BSE TSE Prion testing 25,000 samples a year?


WEDNESDAY, MARCH 24, 2021 

USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA


WEDNESDAY, DECEMBER 2, 2020

EFSA Evaluation of public and animal health risks in case of a delayed post-mortem inspection in ungulates EFSA Panel on Biological Hazards (BIOHAZ) ADOPTED: 21 October 2020

i wonder if a 7 month delay on a suspect BSE case in Texas is too long, on a 48 hour turnaround, asking for a friend???


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


WEDNESDAY, DECEMBER 23, 2020


BSE research project final report 2005 to 2008 SE1796 SID5

***>As a result, using more sensitive diagnostic assays, we were able to diagnose BSE positive cattle from the years 1997-1999 inclusive that were originally negative by vacuolation.  From these data we have estimated that approximately 3% of the total suspect cases submitted up until the year 1999 were mis-diagnosed. 

YOU know, Confucius is confused again LOL, i seem to have remembered something in line with this here in the USA...

BSE research project final report 2005 to 2008 SE1796 SID5


FRIDAY, OCTOBER 1, 2021 

Bovine Spongiform Encephalopathy BSE TSE Prion Origin, USA, what if?


Wednesday, May 19, 2010

Molecular, Biochemical and Genetic Characteristics of BSE in Canada


No competing interests declared.


PLOS ONE Journal 

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

http://www.plosone.org/annotation/listThread.action?root=86610

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;

THURSDAY, AUGUST 19, 2021 

TME to cattle equal atypical L-type BSE USA, madcow origin, what if?


Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

(see mad cow feed in COMMERCE IN ALABAMA...TSS)


2009 UPDATE ON ALABAMA AND TEXAS MAD COWS 2005 and 2006


***> Wednesday, January 23, 2019 

***> CFIA SFCR Guidance on Specified risk material (SRM) came into force on January 15, 2019 <***


TUESDAY, JANUARY 5, 2021 

Exploration of genetic factors resulting in abnormal disease in cattle experimentally challenged with bovine spongiform encephalopathy


TUESDAY, AUGUST 17, 2021 

EU Feed ban Commission authorises use of certain animal proteins, risk another mad cow type outbreak


FRIDAY, FEBRUARY 12, 2021 

Transmission of the atypical/Nor98 scrapie agent to Suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes


WEDNESDAY, FEBRUARY 03, 2021 

Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al


THURSDAY, FEBRUARY 4, 2021 

Guidance for reporting 2021 surveillance data on Transmissible Spongiform Encephalopathies (TSE) 

APPROVED: 1 February 2021


SUNDAY, SEPTEMBER 5, 2021 

Recognition of the Bovine Spongiform Encephalopathy Risk Status of Members Adapted Procedure, May 2020


CHRONIC WASTING DISEASE CWD TSE PRION


Fri, Sep 3, 2021 5:02 pm

comments comments@tahc.texas.govHide

To Terry Singeltary flounder9@verizon.net


Mr. Singeltary,

This email is to acknowledge receipt of your proposed rule comments. Thank you for your interest and participation in the Texas Animal Health Commission’s rulemaking process.

Sincerely,

Amanda 

Amanda Bernhard

Assistant to the Executive Director

Texas Animal Health Commission

512-719-0704


***> 1st and foremost your biggest problem is 'VOLUNTARY'! AS with the BSE 589.2001 FEED REGULATIONS, especially since it is still voluntary with cervid, knowing full well that cwd and scrapie will transmit to pigs by oral route. VOLUNTARY DOES NOT WORK! all animal products should be banned and be made mandatory, and the herd certification program should be mandatory, or you don't move cervid. IF THE CWD HERD CERTIFICATION IS NOT MANDATORY, it will be another colossal tse prion failure from the start.

***> 2nd USA should declare a Declaration of Extraordinary Emergency due to CWD, and all exports of cervid and cervid products must be stopped internationally, and there should be a ban of interstate movement of cervid, until a live cwd test is available.

***> 3rd Captive Farmed cervid ESCAPEES should be made mandatory to report immediately, and strict regulations for those suspect cwd deer that just happen to disappear. IF a cervid escapes and is not found, that farm should be indefinitely shut down, all movement, until aid MIA cervid is found, and if not ever found, that farm shut down permanently.

***> 4th Captive Farmed Cervid, INDEMNITY, NO MORE Federal indemnity program, or what i call, ENTITLEMENT PROGRAM for game farm industry. NO MORE BAIL OUTS FROM TAX PAYERS. if the captive industry can't buy insurance to protect not only themselves, but also their customers, and especially the STATE, from Chronic Wasting Disease CWD TSE Prion or what some call mad deer disease and harm therefrom, IF they can't afford to buy that insurance that will cover all of it, then they DO NOT GET A PERMIT to have a game farm for anything. This CWD TSE Prion can/could/has caused property values to fall from some reports in some places. roll the dice, how much is a state willing to lose?

***> 5th QUARANTINE OF ALL FARMED CAPTIVE, BREEDERS, URINE, ANTLER, VELVET, SPERM, OR ANY FACILITY, AND THEIR PRODUCTS, that has been confirmed to have Chronic Wasting Disease CWD TSE Prion, the QUARANTINE should be for 21 years due to science showing what scrapie can do. 5 years is NOT near long enough. see; Infectious agent of sheep scrapie may persist in the environment for at least 16 to 21 years.

***> 6th America BSE 589.2001 FEED REGULATIONS CWD TSE Prion

***> 7TH TRUCKING TRANSPORTING CERVID CHRONIC WASTING DISEASE TSE PRION VIOLATING THE LACEY ACT

***> 8TH ALL CAPTIVE FARMING CERVID OPERATIONS MUST BE INSURED TO PAY FOR ANY CLEAN UP OF CWD AND QUARANTINE THERE FROM FOR THE STATE, NO MORE ENTITLEMENT PROGRAM FOR CERVID GAME FARMING PAY TO PLAY FOR CWD TSE PRION OFF THE TAX PAYERS BACK.

***> 9TH ANY STATE WITH DOCUMENTED CWD, INTERSTATE, NATIONAL, AND INTERNATIONAL MOVEMENT OF ALL CERVID, AND ALL CERVID PRODUCTS MUST BE HALTED!

***> 10TH BAN THE SALE OF STRAW BRED BUCKS AND ALL CERVID SEMEN AND URINE PRODUCTS

***> 11th ALL CAPTIVE FARMED CERVID AND THEIR PRODUCTS MUST BE CWD TSE PRION TESTED ANNUALLY AND BEFORE SALE FOR CWD TSE PRION

SEE FULL SCIENCE REFERENCES AND REASONINGS ;

Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission



Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification



5 or 6 years quarantine is NOT LONG ENOUGH FOR CWD TSE PRION !!!

QUARANTINE NEEDS TO BE 21 YEARS FOR CWD TSE PRION !

FRIDAY, APRIL 30, 2021 

Should Property Evaluations Contain Scrapie, CWD, TSE PRION Environmental Contamination of the land?

***> Confidential!!!!

***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss


TUESDAY, SEPTEMBER 07, 2021 

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


MONDAY, OCTOBER 25, 2021 

TAHC SUMMARY MINUTES OF THE 410th COMMISSION MEETING CWD Texas Animal Health Commission September 21, 2021


SUNDAY, OCTOBER 24, 2021 

Voluntary Chronic Wasting Disease Herd Certification Program Annual Update, FY2020


SATURDAY, OCTOBER 23, 2021 

USDA APHIS Farmed Cervid Chronic Wasting Disease Management and Response Activities 2021 and other Cooperative Agreements 2021 Spending Plans


MONDAY, OCTOBER 04, 2021 

APHIS Provides $5.7 Million in Funding to Control and Prevent Chronic Wasting Disease


WEDNESDAY, OCTOBER 13, 2021 

Continuing Enhanced National Surveillance for Prion Diseases in the U.S.

The estimated total program funding for this effort is $17,500,000.


TUESDAY, AUGUST 03, 2021 

USA Tables of Cases Examined National Prion Disease Pathology Surveillance Center Cases Examined July 9th, 2021


Saturday, July 23, 2016

BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016


Tuesday, July 26, 2016

Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016


Monday, June 20, 2016

Specified Risk Materials SRMs BSE TSE Prion Program


WEDNESDAY, APRIL 24, 2019 

USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019


ONE DECADE POST MAD COW FEED BAN OF AUGUST 1997...2007

2007
 
10,000,000 POUNDS REASON Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.
 
2007
 
Date: March 21, 2007 at 2:27 pm PST
 
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II PRODUCT
 
Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007 CODE Cattle feed delivered between 01/12/2007 and 01/26/2007 RECALLING FIRM/MANUFACTURER Pfeiffer, Arno, Inc, Greenbush,
WI. by conversation on February 5, 2007.
 
Firm initiated recall is ongoing.
 
REASON Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.
 
VOLUME OF PRODUCT IN COMMERCE 42,090 lbs. DISTRIBUTION WI
 
___________________________________
 
PRODUCT Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007
 
CODE The firm does not utilize a code - only shipping documentation with commodity and weights identified.
 
RECALLING FIRM/MANUFACTURER Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007.
 
Firm initiated recall is complete.
 
REASON Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.
 
VOLUME OF PRODUCT IN COMMERCE 9,997,976 lbs. DISTRIBUTION ID and NV
 
END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

PAGE NOT FOUND
 

ALABAMA MAD COW FEED IN COMMERCE 2006


RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II

______________________________ 

PRODUCT

a) CO-OP 32% Sinking Catfish, Recall # V-100-6;

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;

d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;

e) "Big Jim’s" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;

j) CO-OP LAYING CRUMBLES, Recall # V-109-6;

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;

l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6

CODE

Product manufactured from 02/01/2005 until 06/06/2006

RECALLING FIRM/MANUFACTURER

Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.

REASON

Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE

125 tons

DISTRIBUTION

AL and FL 

______________________________

PRODUCT

Bulk custom dairy feds manufactured from concentrates, Recall # V-113-6

CODE

All dairy feeds produced between 2/1/05 and 6/16/06 and containing H. J. Baker recalled feed products.

RECALLING FIRM/MANUFACTURER

Vita Plus Corp., Gagetown, MI, by visit beginning on June 21, 2006. Firm initiated recall is complete.

REASON

The feed was manufactured from materials that may have been contaminated with mammalian protein.

VOLUME OF PRODUCT IN COMMERCE

27,694,240 lbs

DISTRIBUTION

MI 

______________________________

PRODUCT

Bulk custom made dairy feed, Recall # V-114-6

CODE

None

RECALLING FIRM/MANUFACTURER

Burkmann Feeds LLC, Glasgow, KY, by letter on July 14, 2006. Firm initiated recall is ongoing.

REASON

Custom made feeds contain ingredient called Pro-Lak, which may contain ruminant derived meat and bone meal.

VOLUME OF PRODUCT IN COMMERCE

?????

DISTRIBUTION

KY

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

###


=====

PRODUCT 

Bulk Whole Barley, Recall # V-256-2009

CODE

No code or lot number.

RECALLING FIRM/MANUFACTURER

Mars Petcare US, Clinton, OK, by telephone on May 21, 2009. Firm initiated recall is complete.

REASON

Product may have contained prohibited materials without cautionary statement on the label.

VOLUME OF PRODUCT IN COMMERCE

208,820 pounds

DISTRIBUTION

TX

END OF ENFORCEMENT REPORT FOR AUGUST 26, 2009

###


Subject: MAD COW FEED RECALL KY VOLUME OF PRODUCT IN COMMERCE ????? 

Date: August 6, 2006 at 6:19 pm PST 

PRODUCT Bulk custom made dairy feed, Recall # V-114-6 

CODE None 

RECALLING FIRM/MANUFACTURER Burkmann Feeds LLC, Glasgow, KY, by letter on July 14, 2006. 

Firm initiated recall is ongoing. REASON Custom made feeds contain ingredient called Pro-Lak, which may contain ruminant derived meat and bone meal. 

VOLUME OF PRODUCT IN COMMERCE ????? 

DISTRIBUTION KY 

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

### 


MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67 

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II 

______________________________ 


PRODUCT a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6; 

b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6; 

c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6; 

d) Feather Meal, Recall # V-082-6 

CODE a) Bulk b) None c) Bulk d) Bulk 

RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. 

Firm initiated recall is ongoing.

 REASON Possible contamination of animal feeds with ruminent derived meat and bone meal.. 

VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons 

DISTRIBUTION Nationwide

END OF ENFORCEMENT REPORT FOR July 12, 2006

###


Subject: MAD COW FEED BAN WARNING LETTER ISSUED MAY 17, 2006 

Date: June 27, 2006 at 7:42 am PST Public Health Service Food and Drug Administration

New Orleans District 297 Plus Park Blvd. Nashville, TN 37217

Telephone: 615-781-5380 Fax: 615-781-5391

May 17, 2006

WARNING LETTER NO.. 2006-NOL-06

FEDERAL EXPRESS OVERNIGHT DELIVERY

Mr. William Shirley, Jr., Owner Louisiana.DBA Riegel By-Products 2621 State Street Dallas, Texas 75204

Dear Mr. Shirley:

On February 12, 17, 21, and 22, 2006, a U.S. Food & Drug Administration (FDA) investigator inspected your rendering plant, located at 509 Fortson Street, Shreveport, Louisiana. The inspection revealed significant deviations from the requirements set forth in Title 21, Code of Federal Regulations, Part 589.2000 [21 CFR 589.2000], Animal Proteins Prohibited in Ruminant Feed. This regulation is intended to prevent the establishment and amplification of Bovine Spongiform Encephalopathy (BSE). You failed to follow the requirements of this regulation; products being manufactured and distributed by your facility are misbranded within the meaning of Section 403(a)(1) [21 USC 343(a)(1)] of the Federal Food, Drug, and Cosmetic Act (the Act).

Our investigation found you failed to provide measures, including sufficient written procedures, to prevent commingling or cross-contamination and to maintain sufficient written procedures [21 CFR 589.2000(e)] because:

You failed to use clean-out procedures or other means adequate to prevent carryover of protein derived from mammalian tissues into animal protein or feeds which may be used for ruminants. For example, your facility uses the same equipment to process mammalian and poultry tissues. However, you use only hot water to clean the cookers between processing tissues from each species. You do not clean the auger, hammer mill, grinder, and spouts after processing mammalian tissues.

You failed to maintain written procedures specifying the clean-out procedures or other means to prevent carryover of protein derived from mammalian tissues into feeds which may be used for ruminants.

As a result . the poultry meal you manufacture may contain protein derived from mammalian tissues prohibited in ruminant feed. Pursuant to 21 CFR 589.2000(e)(1)(i), any products containing or may contain protein derived from mammalian tissues must be labeled, "Do not feed to cattle or other ruminants." Since you failed to label a product which may contain protein derived from mammalian tissues with the required cautionary statement. the poultry meal is misbranded under Section 403(a)(1) [21 USC 343(a)(1)] of the Act.

This letter is not intended as an all-inclusive list of violations at your facility. As a manufacturer of materials intended for animal feed use, you are responsible for ensuring your overall operation and the products you manufacture and distribute are in compliance with the law. You should take prompt action to correct these violations, and you should establish a system whereby violations do not recur. Failure to promptly correct these violations may result in regulatory action, such as seizure and/or injunction, without further notice.

You should notify this office in writing within 15 working days of receiving this letter, outlining the specific steps you have taken to bring your firm into compliance with the law. Your response should include an explanation of each step taken to correct the violations and prevent their recurrence. If corrective action cannot be completed within 15 working days, state the reason for the delay and the date by which the corrections will be completed. Include copies of any available documentation demonstrating corrections have been made.

Your reply should be directed to Mark W. Rivero, Compliance Officer, U.S. Food and Drug Administration, 2424 Edenborn Avenue, Suite 410, Metairie, Louisiana 70001. If you have questions regarding any issue in this letter, please contact Mr. Rivero at (504) 219-8818, extension 103.

Sincerely,

/S

Carol S. Sanchez Acting District Director New Orleans District 


PLEASE NOTE, THE FDA URLS FOR OLD WARNING LETTERS ARE OBSOLETE AND DO NOT WORK IN MOST CASES.. I LOOKED UP THE OLD ONE ABOVE AND FOUND IT, BUT HAVE NOT DONE THAT FOR THE OTHERS TO FOLLOW. THE DATA IS VALID THOUGH! 

Subject: MAD COW PROTEIN IN COMMERCE USA 2006 RECALL UPDATE 

From: "Terry S. Singeltary Sr." <[log in to unmask]> 

Reply-To: SAFETY <[log in to unmask]> 

Date: Mon, 9 Oct 2006 14:10:37 -0500 

Subject: MAD COW FEED RECALL USA SEPT 6, 2006 1961.72 TONS 

IN COMMERCE AL, TN, AND WV 

Date: September 6, 2006 at 7:58 am PST

PRODUCT a) EVSRC Custom dairy feed, Recall # V-130-6; b) Performance Chick Starter, Recall # V-131-6; c) Performance Quail Grower, Recall # V-132-6; d) Performance Pheasant Finisher, Recall # V-133-6. CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. 

Firm initiated recall is complete.

REASON Dairy and poultry feeds were possibly contaminated with ruminant based protein.

VOLUME OF PRODUCT IN COMMERCE 477.72 tons 

DISTRIBUTION AL

______________________________

snip...


 Subject: MAD COW FEED RECALLS ENFORCEMENT REPORT FOR AUGUST 9, 2006 KY, LA, MS, AL, GA, AND TN 11,000+ TONS 

Date: August 16, 2006 at 9:19 am PST RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE - CLASS II

______________________________

snip...

______________________________

PRODUCT Bulk custom dairy pre-mixes, Recall # V-120-6 

CODE None 

RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete.

REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal..

VOLUME OF PRODUCT IN COMMERCE 350 tons DISTRIBUTION AL and MS

______________________________

PRODUCT 

a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb. bags, Recall # V-121-6; 

b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6; 

c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6; 

d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6; 

e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6; 

f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6; 

g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6 

CODE All products manufactured from 02/01/2005 until 06/20/2006 

RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.

REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags

DISTRIBUTION AL, GA, MS, and TN

END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006

###


 Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS

Products manufactured from 02/01/2005 until 06/06/2006 

Date: August 6, 2006 at 6:16 pm PST 

PRODUCT 

a) CO-OP 32% Sinking Catfish, Recall # V-100-6; 

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6; 

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6; d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6; 

e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6; 

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6; 

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6; 

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6; 

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6; 

j) CO-OP LAYING CRUMBLES, Recall # V-109-6; 

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6; 

l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6; 

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 

CODE 

Product manufactured from 02/01/2005 until 06/06/2006 RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.

REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE 125 tons DISTRIBUTION AL and FL

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

###


 MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248..128.67

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II

______________________________

PRODUCT 

a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6; 

b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6; 

c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6; 

d) Feather Meal, Recall # V-082-6 

CODE a) Bulk b) None c) Bulk d) Bulk 

RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. 

Firm initiated recall is ongoing.

REASON Possible contamination of animal feeds with ruminent derived meat and bone meal.

VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons

DISTRIBUTION Nationwide

END OF ENFORCEMENT REPORT FOR July 12, 2006

###


Product Details

Product Description:

CalDensity Black Label, CalDensity White Label with HA, packaged in white plastic 5, 15, 25, 40, 60 lb pails with plastic liner and white plastic lid. Reason for Recall:

During an FDA inspection it was found that the CalDensity Black label and CalDensity White Label with HA product containers did not include the precautionary statement DO NOT FEED TO CATTLE OR OTHER RUMINANTS

Product Quantity: 50,935 lbs

Recall Number: V-209-2012

Code Information: 042009, 051009, 061209, 071509, 091009, 011510, 030310, 031610, 052610, 092410, 120110, 011211, 020111, 030911, 050111, 071111 & 090111. Classification: Class II Event Details

Event ID: 61880

Voluntary / Mandated:

Voluntary: Firm Initiated

Product Type:

Veterinary

Initial Firm Notification of Consignee or Public:

E-Mail

Status:

Terminated

Distribution Pattern:

Nationwide distribution: AL, AR, AZ, CA, CO, FL, GA, IA, ID, IL, KY, LA, MD, MI, MN, MO, MS, NC, NE, NJ, NM, NY, OH, OK, PA, SC, TX, UT, VA, WA & WV. No shipments were made to foreign countries including Canada.

Recalling Firm:

Process Managers LLC

485 Gawthrope Dr 

Winchester, KY 40391-8910

United States

Recall Initiation Date:

1/6/2012

Center Classification Date:

9/7/2012

Date Terminated:

1/24/2014


Product Details

Product Description:

Regular Chicken 50# Ingredients: Corn, Wheat, Oats, Oyster shells, Medium Grit, CCC, ADS, Plant Protein Products, Animal Protein Products, Processed Grain By-Products, Roughage Products, Animal Fat procession with DHA, etc

Reason for Recall:

During an FDA sample collection, the firms 50# Regular Chicken Feed was found to contain mammalian protein. The label does not contain the warning statement.

Product Quantity:

5400lbs (50lb bags)

Recall Number:

V-137-2013

Code Information:

8/6/2012

Classification:

Class III

Event Details

Event ID:

63743

Voluntary / Mandated:

Voluntary: Firm Initiated

Product Type:

Veterinary

Initial Firm Notification of Consignee or Public:

Other

Status:

Terminated

Distribution Pattern:

Midland MI area only.

Recalling Firm:

Cohoons Elevator Inc.

802 Townsend St 

Midland, MI 48640-5362

United States

Recall Initiation Date:

11/21/2012

Center Classification Date:

2/8/2013

Date Terminated:

2/12/2013


V. Use in animal feed of material from deer and elk NOT considered at high risk for CWD 

FDA continues to consider materials from deer and elk NOT considered at high risk for CWD to be acceptable for use in NON-RUMINANT animal feeds in accordance with current agency regulations, 21 CFR 589.2000. 

Deer and elk not considered at high risk include: 

(1) deer and elk from areas not declared by State officials to be endemic for CWD and/or to be CWD eradication zones; and 

(2) deer and elk that were not at some time during the 60-month period immediately before the time of slaughter in a captive herd that contained a CWD-positive animal.



2017 Section 21 C.F.R. 589.2000, Animal Proteins Prohibited in Ruminant Feed

Subject: MICHIGAN FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE BREACH APRIL 4, 2017


MICHIGAN FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE BREACH APRIL 4, 2017


FDA BSE/Ruminant Feed Inspections Firms Inventory 


11998 DET-DO MI 48846-847 OPR 4/4/2017 OAI 



http://www.accessdata.fda.gov/scripts/BSEInspect/bseinspections.csv 



NAI = NO ACTION INDICATED


OAI = OFFICIAL ACTION INDICATED


VAI = VOLUNTARY ACTION INDICATED


RTS = REFERRED TO STATE


OAI (Official Action Indicated) when inspectors find significant objectionable conditions or practices and believe that regulatory sanctions are warranted to address the establishment’s lack of compliance with the regulation. An example of an OAI classification would be findings of manufacturing procedures insufficient to ensure that ruminant feed is not contaminated with prohibited material. Inspectors will promptly re-inspect facilities classified OAI after regulatory sanctions have been applied to determine whether the corrective actions are adequate to address the objectionable conditions...end...TSS


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***


TUESDAY, JANUARY 17, 2017 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE 2016 to 2017 BSE TSE PRION


FY 2016 Inspectional Observation Summaries

4132 21 CFR 589.2000(d)(1) Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, *** 2

4131 21 CFR 589.2000(c)(1)(i) Renderers Products that contain or may contain prohibited material fail to bear a label containing the caution statement, "Do not feed to cattle or other ruminants." Specifically, *** 1


FY 2015 Inspectional Observation Summaries

4132 21 CFR 589.2000(d)(1) Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, *** 2


FY 2014 Inspectional Observation Summaries

4146 21 CFR 589.2000(e)(1) Written clean-out procedures Failure to maintain written clean-out procedures to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, *** 2

4131 21 CFR 589.2000(c)(1)(i) Renderers Products that contain or may contain prohibited material fail to bear a label containing the caution statement, "Do not feed to cattle or other ruminants." Specifically, *** 1

4132 21 CFR 589.2000(d)(1) Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, *** 1

4145 21 CFR 589.2000(e)(1) Use of clean-out procedures Failure to use clean-out procedures or other means adequate to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, *** 1


FY 2013 Inspectional Observation Summaries

4131 21 CFR 589.2000(c)(1)(i) 5 Renderers Products that contain or may contain prohibited material fail to bear a label containing the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***

4132 21 CFR 589.2000(d)(1) 5 Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***

4145 21 CFR 589.2000(e)(1) 1 Use of clean-out procedures Failure to use clean-out procedures or other means adequate to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***

4146 21 CFR 589.2000(e)(1) 1 Written clean-out procedures Failure to maintain written clean-out procedures to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***

FY 2012 Inspectional Observation Summaries

4131 21 CFR 589.2000(c)(1)(i) 5 Renderers Products that contain or may contain prohibited material fail to bear a label containing the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***

4132 21 CFR 589.2000(d)(1) 4 Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***


FY 2011 Inspectional Observation Summaries

4132 21 CFR 589.2000(d)(1) 5 Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants."Specifically, ***

4131 21 CFR 589.2000(c)(1)(i) 4 Renderers Products that contain or may contain prohibited material fail to bear a label containing the caution statement, "Do not feed to cattle or other ruminants."Specifically, ***

4146 21 CFR 589.2000(e)(1) 1 Written clean-out procedures Failure to maintain written clean-out procedures to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***


FY 2010 Inspectional Observation Summaries

4131 21 CFR 589.2000(c)(1)(i) 3 Renderers Products that contain or may contain prohibited material fail to bear a label containing the caution statement, "Do not feed to cattle or other ruminants." Specifically, *** 4132 21 CFR 589.2000(d)(1) 3 Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***

4146 21 CFR 589.2000(e)(1) 1 Written clean-out procedures Failure to maintain written clean-out procedures to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***


FY 2009 Inspectional Observation Summaries

4132 21 CFR 589.2000(d)(1) 10 Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***

4146 21 CFR 589.2000(e)(1) 4 Written clean-out procedures Failure to maintain written clean-out procedures to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***

4145 21 CFR 589.2000(e)(1) 3 Use of clean-out procedures Failure to use clean-out procedures or other means adequate to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***


FY 2008 Inspectional Observation Summaries

4132 21 CFR 589.2000(d)(1) 7 Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***

4145 21 CFR 589.2000(e)(1) 1 Use of clean-out procedures Failure to use clean-out procedures or other means adequate to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, *** 4146 21 CFR 589.2000(e)(1) 1 Written clean-out procedures Failure to maintain written clean-out procedures to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***


FY 2007 Inspectional Observation Summaries

4132 21 CFR 589.2000(d)(1) 3 Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***

4146 21 CFR 589.2000(e)(1) 3 Written clean-out procedures Failure to maintain written clean-out procedures to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***

4131 21 CFR 589.2000(c)(1)(i) 2 Renderers Products that contain or may contain prohibited material fail to bear a label containing the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***

4145 21 CFR 589.2000(e)(1) 1 Use of clean-out procedures Failure to use clean-out procedures or other means adequate to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***


FY 2006 Inspectional Observation Summaries

4132 21 CFR 589.2000(d)(1) 6 Protein blenders, feed manufacturers, distributors Products that contain or may contain prohibited material fail to bear the caution statement, "Do not feed to cattle or other ruminants."Specifically, ***

4146 21 CFR 589.2000(e)(1) 5 Written clean-out procedures Failure to maintain written clean-out procedures to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***

4145 21 CFR 589.2000(e)(1) 4 Use of clean-out procedures Failure to use clean-out procedures or other means adequate to prevent carryover of protein derived from mammalian tissues to animal protein or feeds that may be used for ruminants. Specifically, ***

4131 21 CFR 589.2000(c)(1)(i) 2 Renderers Products that contain or may contain prohibited material fail to bear a label containing the caution statement, "Do not feed to cattle or other ruminants." Specifically, ***


*** PLEASE SEE THIS URGENT UPDATE ON CWD AND FEED ANIMAL PROTEIN ***

Sunday, March 20, 2016

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed ***UPDATED MARCH 2016*** Singeltary Submission


SEE MAD COW FEED VIOLATIONS AFER MAD COW FEED VIOLATIONS ;


Tuesday, April 19, 2016

Docket No. FDA-2013-N-0764 for Animal Feed Regulatory Program Standards Singeltary Comment Submission


17 years post mad cow feed ban August 1997 

Monday, October 26, 2015 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE October 2015 


Tuesday, December 23, 2014 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION 


16 years post mad cow feed ban August 1997 2013 

Sunday, December 15, 2013 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE 


Saturday, August 29, 2009

FOIA REQUEST FEED RECALL 2009 Product may have contained prohibited materials Bulk Whole Barley, Recall # V-256-2009


 Friday, September 4, 2009

FOIA REQUEST ON FEED RECALL PRODUCT 429,128 lbs. feed for ruminant animals may have been contaminated with prohibited material Recall # V-258-2009


Thursday, March 19, 2009

MILLIONS AND MILLIONS OF POUNDS OF MAD COW FEED IN COMMERCE USA WITH ONGOING 12 YEARS OF DENIAL NOW, WHY IN THE WORLD DO WE TO TALK ABOUT THIS ANYMORE $$$



Tuesday, April 27, 2021 

Working Document on Camel Prion Disease (CPrD) 14/09/2020



Terry S. Singeltary Sr.